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c and numerical solutions for an unconfined aquifer beneath Mars’ southern highlands provides first-order
s of groundwater table elevation.
control on the steady groundwater table elevation is the ratio between mean recharge and mean hydraulic
ivity of the aquifer.
monly assumed values of hydraulic conductivity, the steady recharge must be at the lower end of the
d range of recharge fluxes.
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I N F O A B S T R A C T
To determine plausible groundwater recharge fluxes on early Mars, we developed analytic and
numerical solutions for an unconfined steady-state aquifer beneath the southern highlands.
We showed that the aquifer’s mean hydraulic conductivity, 𝐾 , is the primary constraint on
the plausible magnitude of the mean steady recharge, 𝑟. By using geologic constraints, a
mean hydraulic conductivity of 𝐾 ∼10−7 m/s, and varying shoreline elevations and recharge
distributions, the mean recharge must be of the order of 10−2 mm/yr. Recharge for other values
of 𝐾 can be estimated as 𝑟 ∼10−5 𝐾 . Our recharge value is near the low end of previous
estimates and significantly below published precipitation estimates. This suggests that, in a
steady hydrologic cycle, most precipitation forms runoff as opposed to infiltrating into the
subsurface. Alternatively, high rates of runoff production combined with a sufficiently slow
transient aquifer response to recharge may limit major groundwater upwelling prior to the
cessation of climatic excursions causing precipitation.

ction
e of Mars retains several planetary scale structures. The largest is the crustal dichotomy separating Mars’
nds from its southern highlands via an abrupt ∼ 5 km topographic transition (Figure 1). In stark contrast
plains in the north, the highlands preserve the oldest, most heavily cratered terrain on the planet as well

mpact basins, Hellas and Argyre (Smith et al., 1999). These structures formed prior to ∼3.7 Ga, in the
when Mars is also hypothesized to have had an active hydrologic cycle (Carr, 1986; Clifford, 1993; Frey,

, 2008). The formation of these structures would have impacted any possible surface and groundwater
to their associated topographic lows.
mple evidence for liquid water on Mars’ surface early in the planet’s history. The eroded remains of
ted fluvial drainage systems, called “valley networks", dissect the highlands (Milton, 1973; Goldspiel
1991; Carr, 1996; Hynek and Phillips, 2001). Spectral data strengthen inferences of past surface water
ses with observations of hydrated silicates that suggest near surface aqueous mineral alteration (Mustard
hlmann et al., 2009; Carter et al., 2013). Open and closed crater lakes have been identified throughout
terrain, providing further evidence of standing bodies of water on the Martian surface (Cabrol and Grin,
and Head III, 2008; Di Achille and Hynek, 2010). Additionally, observations in Argyre and Hellas also
ssible past existence of large standing bodies of water within these basins (Parker et al., 2000; Wilson
ohm et al., 2015; Hiesinger and Head, 2002; Hargitai et al., 2018; Zhao et al., 2020). Many have also
immense ocean once existed within the lowlands (e.g., Parker et al., 1989, 1993; Carr and Head, 2003).
of surface water processes and standing bodies of water naturally leads to questions regarding the
extent of any groundwater systems. A globally connected groundwater system has been inferred in

morphic and numerical modeling based studies (e.g., Clifford, 1993; Andrews-Hanna et al., 2007;
d Hynek, 2010; Salese et al., 2019). Additionally, observations of layered deposits in Arabia Terra
ve been interpreted as evaporites resulting from groundwater upwelling (Christensen et al., 2000;
al., 2003; Squyres et al., 2004; McLennan et al., 2005; Grotzinger et al., 2005; Bibring et al., 2007;
ing author
att@utexas.edu (E. Hiatt); mashadab@utexas.edu (M.A. Shadab)
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Limited Recharge of the Southern Highlands Aquifer on Early Mars

na et al., 2007). These findings suggest that Mars had an active groundwater hydrology, but its coupling
ydrology through groundwater recharge and upwelling is poorly understood.
nvestigate the plausible values of groundwater recharge as constrained by large-scale topography and
rvations. The aim of this work is not to constrain the specific hydrology at discrete time periods on
ut to establish constraints on the total rates of groundwater recharge that are plausible given geologic
With this aim, we then compare our findings to published estimates of precipitation rates. In doing so,
nto groundwater-to-surface water coupling may be gained, however this requires simplifying assumptions
in hydraulic head levels, hydraulic conductivity, and recharge distributions.
e the effect of standing bodies of water on possible groundwater recharge, we use mean shoreline
euteronilus (-3790 m), Arabia (-2090 m), and Meridiani (0 m) as illustrative examples (see Table 1 in
(2003) and Figure 1). The existence of a northern ocean remains contentious, with some studies arguing

eter-scale deviation of equipotential shorelines preclude the possibility of any ocean(s) (e.g., Malin and
Sholes et al., 2019, 2021; Sholes and Rivera-Hernández, 2022); however, others have suggested that true
and/or deformation associated with the Tharsis Rise can explain these discrepancies (Perron et al., 2007;
018; Chan et al., 2018). Although each of these individual shorelines is uncertain, together they allow
dels to span a large parameter space in Mars’ total water budget. Here, we show that the existence of
an, regardless of extent, is a secondary control on groundwater when compared to the geometry of the

graphy of Mars derived from Mars Orbiter Laser Altimeter (MOLA) aboard the Mars Global Surveyor (MGS)
et al., 1999). Hellas and Argyre impact basins are labeled along with the northern lowlands. Three mean

tions are taken from Parker et al. (1989) and Carr and Head (2003). Argyre and Hellas impact basins are
elevation of -2090 m.

ution of valley networks offers insight into groundwater table elevation, which often sets the local base
fluvial systems can erode. The wide distribution of incised valley networks implies that any groundwater
ly below the surface topography over much of the planet (Hynek et al., 2010). Similarly, Arabia Terra’s
k of incised valley networks and the presence of inverted fluvial channels suggests that the region was a
nvironment, with a groundwater table at or near the surface consistent with rover observations (Squyres
rotzinger et al., 2005; Davis et al., 2016, 2019). Evidence that the groundwater table was significantly
phy, everywhere except in Arabia Terra, provides a constraint on plausible groundwater recharge fluxes.
aquifer recharge and precipitation rates vary by orders of magnitude. Estimates of water availability due
ce accumulation give values ranging from 10−2 to 103 mm/yr (e.g., Wordsworth et al., 2015; Fastook
5; von Paris et al., 2015) and estimates of precipitation range of 100 − 103 mm/yr (e.g., Kamada et al.,
reprint submitted to Elsevier Page 2 of 15
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Limited Recharge of the Southern Highlands Aquifer on Early Mars

orth et al., 2015). Geomorphic studies have estimated water associated with runoff production between
/yr (Ramirez et al., 2020; Hoke et al., 2011). However, these studies only provide an upper bound on

echarge due to the unknown partitioning between runoff and infiltration.
imates of recharge from previous modeling studies vary between 10−2 to 103 mm/yr, but require the
of unknown aquifer properties (Harrison and Grimm, 2009; Andrews-Hanna et al., 2007, 2010; Luo
orvath and Andrews-Hanna, 2017). Here, we examine the importance of these properties individually,
ossible standing bodies of water, and consequences associated with varying recharge distributions on the
ovel analytic and numerical groundwater models. By comparing solutions with the inferred depositional
ithin Arabia Terra and the distribution of valley networks, we ask: what are plausible mean recharge
steady-state aquifer on early Mars?

ology
for the southern highlands aquifer
many previous large-scale groundwater studies on Mars (e.g., Clifford, 1993; Hanna and Phillips, 2005;

ard, 2008), we use the Dupuit-Boussinesq model (Dupuit, 1863; Forchheimer, 1901; Boussinesq, 1903).
relies on the large aspect ratio of the aquifer to assume groundwater flows predominantly horizontal.

ion reduces the dimensionality and computational cost of the model, which makes planetary-scale
feasible. For a recent review of this approach to large-scale groundwater modeling, with a derivation
ng equations and an explanation of their physical interpretation, see Troch et al. (2013). At steady state,
ds to the following non-linear elliptic partial differential equation for the height, ℎ, of the groundwater
e base of the aquifer given by

ℎ∇ℎ] = 𝑟 𝜒(𝜃, 𝜃𝑟), (1)
angle from the south pole or southern colatitude, 𝐾 is the hydraulic conductivity, 𝑟 is the recharge, and
tor function. The divergence and gradient take their standard form in spherical shell coordinates; see
.2. For clarity of presentation, we assume that both 𝐾 and 𝑟 are constant and hence refer to them as the
c conductivity and the mean recharge; however, our numerical computations can be extended to spatially
uctivity and recharge. Figure 2a shows that the base of the aquifer is assumed to be at an elevation of
consistent with previous studies (Andrews-Hanna et al., 2010; Andrews-Hanna and Lewis, 2011). For
ion of the highlands of 𝑧𝐻 = 1 km, the aquifer has a maximum thickness of 𝑑 = 𝑧𝐻 − 𝑧𝐵 = 10 km,
ious work (Hanna and Phillips, 2005). In this reference frame, the elevation of the groundwater table is
= 𝑧𝐵 + ℎ.

e that the recharge, 𝑟, is evenly distributed in a latitudinal band of angular width, Δ𝜃𝑟 = 180◦ − 2𝜃𝑟,olatitude 𝜃𝑟 and 180◦ − 𝜃𝑟 (Figure 2b). This band is defined by the indicator function 𝜒(𝜃, 𝜃𝑟) that is one
80◦ − 𝜃𝑟 and zero otherwise. We note that the recharge, 𝑟, is a flux, i.e., a volume per unit area per unit

l rate of recharge can be obtained by integrating the flux over the surface area of the aquifer. We assume
ter recharge occurs only on land, so that the boundaries of the recharge band may be influenced by the
is implies that for the same recharge flux, 𝑟, and width of recharge band, Δ𝜃𝑟, the total aquifer recharge
or different shore lines. Finally, the recharge should be considered as a temporally averaged quantity,
nsider a steady system.
c Solutions for an idealized spherical cap aquifer
first-order understanding of the groundwater dynamics, we derive analytic solutions in an idealized
aquifer with azimuthal symmetry. The spherical caps corresponding to the three shorelines shown in
lustrated in Figure 2c-e. We choose the southern colatitude of the mean shoreline, 𝜃o, so that the surface
alized spherical cap aquifer is equivalent to the area enclosed by the complex shoreline in Figure 1. In
solution is only a function of latitude, 𝜃 and equation (1) reduces to the following differential equation

d [𝐾 sin 𝜃ℎdℎ
]
= 𝑟 𝜒(𝜃, 𝜃𝑟) on 𝜃 ∈

[
0, 𝜃o

]
, (2)
𝜃 d𝜃 𝑅 d𝜃

reprint submitted to Elsevier Page 3 of 15
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Limited Recharge of the Southern Highlands Aquifer on Early Mars

plified model and analytic solutions. a) Cross-section through the one-dimensional azimuthally symmetric
nesq model for the southern highlands aquifer. The azimuthally averaged MOLA topography is shown in
implified step function topography for the Deuteronilus shoreline is shown in black. The groundwater table
re shown in blue. b) Construction of the composite solution with a longitudinal recharge band for case 3.
relines from Carr and Head (2003) shown in black together with the equal-area spherical cap aquifer shown
d the complementary spherical cap ocean in light gray.

390 km is the mean radius of Mars (Smith et al., 1999), and 𝜃o is the southern colatitude of the mean
he northern ocean and 𝑟 is the mean recharge flux. We assumed a simple step in topography at the
between the mean elevation of the highlands, 𝑧H = 1 km, and the mean elevation of the lowlands,

(Figure 2d). At the south pole, the groundwater table is horizontal by symmetry, dℎ∕d𝜃|𝜃=0 = 0, and
eline the head is prescribed, ℎ(𝜃o) = ℎ𝑜 (Figure 2a).
ar, we are interested in the effect that the width of the recharge band, Δ𝜃𝑟, has on the groundwater table
recharge fluxes. As the width of the latitudinal recharge band, Δ𝜃𝑟, is varied, three different cases must
ed in the analytical solution. The first and simplest case is uniform recharge over the entire aquifer, and
cases are for partial recharge.
m recharge (Case 1)

plest case, the recharge is uniform across the entire highlands, 𝜃𝑟 = 0 and 𝜒(𝜃, 0) = 1. We have presented
lutions for this limiting case in (Shadab et al., 2022). The head is given by
√

ℎ2𝑜 + 2𝑟𝑅
2

𝐾
ln
||||
cos 𝜃 + 1
cos 𝜃o + 1

||||, for 𝜃 ∈
[
0, 𝜃o

]
, (3)

igure 2a. The solution for case 1 becomes the basis for the analytic solutions with heterogeneous recharge
iscussed below. Shadab et al. (2022) also shows the associated specific discharge, 𝑞(𝜃) = −𝐾dℎ∕d𝜃,

arge 𝑄(𝜃) = ℎ(𝜃)𝑙(𝜃)𝑞(𝜃), where 𝑙 = 2𝜋𝑅 sin 𝜃 is the length of the small circle with colatitude 𝜃.
balance at steady state requires that the discharge must equal the recharge rate, 𝑄(𝜃) = 𝑟𝐴(𝜃), where
(1 − cos 𝜃) is the area of the spherical cap. These relations also hold for the other cases given below.
l recharge
present new solutions for an unconfined aquifer with partial recharge, 0 < 𝜃𝑟 < 90◦. In all cases, we
ge in a longitudinal band between 𝜃𝑟 and 180◦ − 𝜃𝑟 of width Δ𝜃𝑟 = 180◦ − 2𝜃𝑟. First, we consider the
e northern boundary of the precipitation band, 180◦ − 𝜃𝑟, is north of the dichotomy shoreline, 𝜃o, that
uifer (Case 2). Then, we consider the case of a latitudinal precipitation band that is entirely south of the
oreline (Case 3). In this latter case, the northern-most part of the aquifer does not receive recharge and

gions is entirely due to lateral inflow from the south.
reprint submitted to Elsevier Page 4 of 15
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Limited Recharge of the Southern Highlands Aquifer on Early Mars

(180◦ − 𝜃𝑟 ≥ 𝜃o): In this case, recharge starts at the most southern colatitude of the recharge band, 𝜃𝑟,nds to our chosen ocean shoreline at 𝜃o. The solution for the head is piece-wise defined and given by

(𝜃) =
⎧⎪⎨⎪⎩

ℎmax = ℎ(𝜃𝑟) = const., 0 ≤ 𝜃 < 𝜃𝑟,

√
ℎ2𝑜 + 2 𝑟𝑅2

𝐾 Δ(𝜃, 𝜃𝑟, 𝜃o), 𝜃𝑟 ≤ 𝜃 ≤ 𝜃o,
(4)

e have introduced the geometric function

(𝜃, 𝜃𝑟, 𝜃o) = ln
||||
sin 𝜃
sin 𝜃o

|||| − cos 𝜃𝑟 ln
||||
(cos 𝜃 + 1) sin 𝜃o
(cos 𝜃o + 1) sin 𝜃

|||| (5)

es from the integration on the sphere. In the limit of 𝜃𝑟 → 0 this function reduces the logarithmic term
tion 3.
(180◦ − 𝜃𝑟 < 𝜃o): In this case, recharge starts at 𝜃𝑟 and extends only until 180◦ − 𝜃𝑟 < 𝜃o, so that the
n most portion of the aquifer does not receive any recharge, 𝑟 = 0, but a discharge, 𝑄𝑟, from the region
he latitudinal recharge band. The different elements in the construction of this solution are illustrated in
b. The solution for the head in the region without a recharge is given by

′(𝜃) =

√
ℎ2𝑜 +

𝑄𝑟
𝜋𝐾

ln
||||
tan(𝜃o∕2)
tan(𝜃∕2)

||||. (6)

arge this area receives is the total recharge integrated over the latitudinal recharge band and given by
os(𝜃𝑟) − cos(180◦ − 𝜃𝑟)

)
𝑟. Given 𝑄𝑟, the head at the northern boundary of the latitudinal recharge band

ted as

(180◦ − 𝜃𝑟) =

√
ℎ2𝑜 +

𝑄𝑟
𝜋𝐾

ln
||||

tan(𝜃o∕2)
tan((180◦ − 𝜃𝑟)∕2)

||||. (7)

forms the boundary condition for the solution within the latitudinal recharge band, which is similar to
xcept that ℎ𝑜 is replaced with ℎ𝑏. The full piece-wise solution for case 3 is then given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ℎmax = ℎ(𝜃𝑟) = const., 0 ≤ 𝜃 < 𝜃𝑟,

√
ℎ2𝑏 + 2 𝑟𝑅2

𝐾 Δ(𝜃, 𝜃𝑟, 180◦ − 𝜃𝑟), 𝜃𝑟 ≤ 𝜃 < 180◦ − 𝜃𝑟,

ℎ′(𝜃) =
√

ℎ2𝑜 +
𝑄𝑟
𝜋𝐾 ln |||

tan(𝜃o∕2)
tan(𝜃∕2)

|||, 180◦ − 𝜃𝑟 ≤ 𝜃 ≤ 𝜃o,

(8)

, 𝜃𝑟, 180◦ − 𝜃𝑟) is given by equation (5).
ons for all three cases, equations (3), (4) and (8), depend only on the dimensionless ratio 𝑟∕𝐾 and not on
idually. The physical interpretation of this ratio is that it takes more recharge to sustain the water table at
t if the regolith is very conductive and allows the water to flow away quickly. Therefore, below we will
usible recharge values in terms of this ratio.
reprint submitted to Elsevier Page 5 of 15
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tment of complex shorelines in the numerical groundwater model. a) The global mesh is shown in gray with
reline and the equivalent elevation shorelines in the Hellas and Argyre basins are shown in black. The green
the zoom-in area shown in panels b and c. b) Numerical mesh in the vicinity of the Hellas basin. Active
by green dots, and inactive cells are shown by red dots. Black dots identify the cells where the boundary

sponding to the Hellas shoreline is imposed. c) The resulting numerical solution for the groundwater table
of the shoreline in the Hellas basin.

um recharge value
tic solutions presented above allow a first-order estimate of the plausible 𝑟∕𝐾 ratio over a wide parameter
e constraints on plausible recharge values, we used the observation that the groundwater table was below
the majority of the highlands. In our analytic model widespread upwelling would occur if the elevation

water table exceeds the mean elevation of the highlands, max(𝑧GW) = 𝑧H, see Figure 2b. Because the
always highest at the south pole this is equivalent to requiring that ℎ(0) = 𝑧H − 𝑧B = 𝑑. Substituting this
(3), (4), (8) and solving for 𝑟∕𝐾 , we obtain the maximum 𝑟∕𝐾 ratio for each case as

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑑2−ℎ2𝑜
2𝑅2 ln

||||
cos 𝜃+1
cos 𝜃o+1

||||
, case 1,

𝑑2−ℎ2𝑜
2𝑅2Δ(𝜃𝑟,𝜃𝑟,𝜃o)

, case 2,

𝑑2−ℎ2𝑜
𝐴𝑠∕𝜋 ln

(
tan(𝜃o∕2)

tan(180◦−𝜃𝑟)∕2

)
+2𝑅2Δ(𝜃𝑟,𝜃𝑟,180◦−𝜃𝑟)

, case 3.

(9)

lts will be discussed in section 3.
ical Model for southern highlands aquifer
gate the effects of complex shorelines and basins on plausible recharge fluxes, we developed a numerical
highlands’ aquifer. We non-dimensionalized equation (1) and discretized it in spherical shell geometry.
ses conservative finite differences on a tensor product grid with an operator-based implementation
92). The resulting non-linear system of equations is solved with the Newton-Raphson method. More
numerical model and the benchmark test can be found in SI Section S3. For consistency between the
umerical models all dimensional simulation results use a hydraulic conductivity of, 𝐾 = 10−7 m/s.
the locations of the shorelines in the northern lowlands and basins, the MOLA topography is down-
r grid pixel resolution of 1.2◦ (Figure 3a). Next, these shorelines are used to divide the computational
e highlands aquifer and three open water basins by assuming an equipotential surface across a standing

r. Cells within these basins must be excluded from the computations (Figure 3b). We locate the cell
nding to the elevation of the chosen basin, for example the cells marked red within the Hellas basin in
reprint submitted to Elsevier Page 6 of 15
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e entries corresponding to inactive cells can be removed from the matrix equation using the projection
Shadab and Hesse, 2022, for details). The reduced matrix system of discrete governing equations can
on the active cells (green dots in Figure 3b). The resulting head distribution in the vicinity of the Hellas
in Figure 3c.

rtion of the specified recharge band extends north of the chosen shoreline, the prescribed recharge flux
the system under the assumption that rainfall in a large body of water has a net zero effect on the water

, the same latitudinal recharge band can lead to different total recharge rates for different shorelines.

tic and numerical aquifer models provide complementary information about the plausible steady-state
s for Mars’ highlands aquifer. The analytic solution gives insight into the relationship between recharge
conductivity, whereas the numerical results allow us to investigate the effects of complex shoreline
lthough the analytic solution is highly simplified, the order of magnitude agreement between both
ides confidence between the solutions.
e mean hydraulic conductivity nor the mean recharge of the highlands aquifer are known. Our analysis

solution for the head, given by equations (3, 4, 8), is primarily a function of the dimensionless ratio
rge and hydraulic conductivity, 𝑟∕𝐾 . This ratio allows us to estimate which recharge values are plausible
posed mean hydraulic conductivity. For example, Figures 4a-4c show the elevation of the groundwater
herical cap aquifer for different shorelines and increasing recharge values. For a hydraulic conductivity of
nalytic model predicts recharge values on the order of 10−2 mm/yr are capable of raising the groundwater
rface.
groundwater elevation lower than topography in the majority of the highlands constrains plausible 𝑟∕𝐾
4d shows the plausible combinations of hydraulic conductivity and recharge for the Arabia shoreline.
s that reducing the mean 𝐾 by an order of magnitude requires a similar drop in the mean 𝑟 to prevent
welling. The effects of varying other parameters, such as the chosen shoreline (Figure 4a-4c) or the

ibution (Figure 4e-4g) are less than an order magnitude. For example, if the width of the recharge band,
by ±20◦ around the preferred value of 90◦ for an aquifer with 𝐾 = 10−7 m/s the maximum plausible
ean recharge for the three shorelines vary only between 6 ⋅ 10−3 and 1.6 ⋅ 10−2 mm/yr (Figure 4h). The

l already demonstrates that the recharge estimates are not very sensitive to the recharge distribution. The
ults below show that this is even less important when complex shorelines are present. In that case, the

level is more sensitive to the distance to the shoreline than it is to the recharge distribution.
f the simplified spherical cap aquifer model demonstrates that the elevation of the groundwater table is

nction of the 𝑟∕𝐾 ratio. Although the mean 𝐾 of the southern highlands is not known, reasonable values
f 10−6 to 10−8 m/s (Hanna and Phillips, 2005) require very low groundwater recharge rates to avoid

roundwater upwelling (Figure 4d). This conclusion is relatively insensitive to the particular shoreline
titudinal width of the precipitation band, or the depth of the aquifer base. The particular value of the
rimarily determined by the large surface area of the highlands relative to the cross-sectional area of the
cussed in Section 4.

the effect of complex shorelines, we present numerical solutions using the Arabia shoreline, 𝐾 = 10−7
0−2 mm/yr (Figure 5). First, we explore the effect of the shoreline alone and then consider the influence

Hellas and Argyre basins. When comparing the analytic solution for the spherical cap aquifer (Figure 5a)
erical solution for the Arabia shoreline (Figure 5b), we observe an overall drop in the elevation of the
able. The complex shoreline generates a local maximum in groundwater elevation at the farthest location
ne within the precipitation band. The complex shoreline has an increased shoreline length and reduces
drain into a basin resulting in more effective drainage. The presence of basins further lowers the head

(Figure 5c). These basins provide additional shorelines within the highlands that help drain the aquifer.
er shorelines are provided in the SI Section S4.3 and S4.4.

ur numerical model demonstrates that complex shorelines lower the head in the aquifer and therefore
ausible value of mean recharge. However, these geometric effects do not change the order of magnitude of
ange for 𝑟∕𝐾 . As such, the unknown mean hydraulic conductivity of the highlands remains the dominant
allowable mean recharge. In Figure 6, we explore the location and extent of groundwater upwelling in
as a function of mean recharge in an aquifer bounded by the Arabia shoreline at the dichotomy and
reprint submitted to Elsevier Page 7 of 15
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) Analytic solution for steady unconfined aquifer on a spherical shell. Elevation of the groundwater table
levations of the Meridiani, Arabia, and Deuteronilus shorelines of Carr and Head, 2003. In each case, the
ble is shown for multiple recharge values, as given by the legend in panel b. d) Depth of groundwater beneath
elevation, 𝑧H = 1 km for the Arabia shoreline. The parameters corresponding to the solutions from panel b)

dots. The maximum plausible recharge from equation (9) is shown in red. Note that these solutions assume
extends to the shoreline, 𝜃o ≤ 180◦ − 𝜃𝑟. e-g) The Deuteronilus shoreline is utilized to examine the effect
tribution. The region receiving recharge is varied and shaded in shaded blue. The recharge color scheme,

mains. h) The effect of the thickness of the recharge band on the maximum recharge flux is examined. Note
ulic conductivity remains constant at 𝐾 = 10−7 m/s and the x-axis is the total width of recharge above and
ator. The gray line in the elevation plots refers to the azimuthally averaged MOLA topography.

quivalent elevation in Hellas and Argyre. Figure 6a-6c shows the depth, compared to topography, of the
able for a succession of simulations with increasing amounts of recharge. Areas with deep blue colors are
hereas areas of groundwater upwelling are shown in white and light blue regions. For 𝑟 = 10−2 mm/yr
do not experience significant upwelling outside of some deep craters (Figure 6a), suggesting 𝑟 is too
g the recharge to 3 ⋅ 10−2 mm/yr forms a region of groundwater upwelling in Arabia Terra (Figure 6b),
ic observations suggest upwelling has occurred (e.g., McLennan et al., 2005; Grotzinger et al., 2005;
reprint submitted to Elsevier Page 8 of 15
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t of complex geometry for an aquifer with a recharge flux of 10−2 mm/yr evenly distributed between -45◦

nalytic solution from equation 4 with mean Arabia shoreline. b) Numerical solution with Arabia shoreline.
solution with Arabia shoreline and standing water in Hellas and Argyre basins. The hydraulic head level in
ssumed to be equal to the Arabia shoreline elevation. All numerical solutions presented in this work assume
nductivity of 𝐾 = 10−7 m/s and assume that all basins have shoreline elevations equivalent to the Arabia
at −2090 m. Results for other shorelines are provided in the SI Section S4.3 and S4.4.

016, 2019). A further increase in recharge to only 10−1 mm/yr results in large areas of the highlands
upwelling beyond that supported by observations (Figure 6c).
of the highlands that experiences groundwater upwelling grows rapidly with increasing recharge
herefore, the lack of evidence for pervasive depositional environments in the highlands places a constraint
le 𝑟∕𝐾 ratio. For the mean hydraulic conductivity 𝐾 = 10−7 m/s, the recharge that best reproduces the
ogy qualitatively is approximately 3 ⋅ 10−2 mm / year, leading to 6.3% of the highlands experiencing
gure 6b). This solution is obtained using a fairly large recharge band from −45◦ to 45◦, however, the
l is less sensitive to recharge distribution than the analytic model. This is due to the irregular geometry

ne and shortened travel paths to standing bodies of water such as Argyre and Hellas basins as well as
ris. If the recharge band is reduced to −30◦ to 30◦, the same 6.3% upwelling is observed with only
onal recharge. The calculated 𝑟∕𝐾 remains on the order of ∼ 10−5. This is insensitive to any reasonable
reprint submitted to Elsevier Page 9 of 15
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egarding recharge distribution and therefore can be used to estimate plausible values of 𝑟 for any preferred

on
s show that a groundwater aquifer beneath the highlands requires very low recharge values to avoid
upwelling occurring outside areas suggested by observational evidence. We show that the plausible
charge increases linearly with the assumed mean hydraulic conductivity of the aquifer. As such, plausible
s for any preferred hydraulic conductivity can be estimated as 𝑟 ∼ 10−5𝐾 . This relationship is evident

ytic solutions (equation 8) and confirmed by numerical models of varying complexity. Whereas the
he shorelines has a small effect on the overall magnitude of recharge, Mars’ planetary scale topography
lling to occur first in Arabia Terra as recharge increases, in agreement with previous work (Andrews-
007). If groundwater is assumed to be at or near the surface primarily in Arabia Terra and the chosen 𝐾
onstant, the range of plausible recharge fluxes varies by less than one order of magnitude (Figure 6d).
uential because physically informed hydraulic conductivity estimates can be made. Here, we employed
commonly used in Mars groundwater studies (Hanna and Phillips, 2005; Andrews-Hanna et al., 2010;
ndrews-Hanna, 2017).

lobal groundwater studies estimate recharge fluxes from ∼ 10−2 mm/yr (Andrews-Hanna et al., 2007) to
(Andrews-Hanna and Lewis, 2011) for comparable mean hydraulic conductivities, see SI Section S4.1.
es are consistent with our results and suggest that they are not strongly dependent on model assumptions.
confidence in our methods, given that our model is fundamentally different from any previously published
artian groundwater model. In previous work, there were no numerical mechanisms to create a complex

lowed for standing water and resultant shorelines. Any water that breached the topography was assumed
nd then redistributed across the recharge band (Andrews-Hanna et al., 2007). In doing so, choosing the
f the hydraulic head determines the hydraulic head gradients, and the initial hydraulic head gradients
dwater flux rates out of topographically low areas. The recharge then becomes a dynamic variable of
dition rather than an independent parameter space. This modeling method also creates a model that
steady state unless some method of perturbation is evoked, such as secular water loss. Previous global

are essentially the extreme end member of this work in which there is no standing water. Despite all the
the model methods and parameterizations, the estimated steady recharge fluxes predicted by previous
that do not include standing water is 0.01𝑚𝑚∕𝑦𝑟 while our model prediction is ∼ 0.03𝑚𝑚∕𝑦𝑟 (Figure
t that low values of acceptable mean recharge are due to the large surface area, 𝐴𝑠, of the aquifer relative
ss-sectional area, 𝐴x. This geometric control can be understood by a volume balance over a spherical cap
dy state. The total rate of recharge is 𝑄𝑟 = 𝐴𝑠𝑟 and the total discharge out of the aquifer is 𝑄𝑑 = 𝐴x𝑞𝜃 ,
lumetric flux from Darcy’s law. Total volume balance requires that 𝑄𝑑 = 𝑄𝑟, so that

x
𝑠

q𝜃 ∼ 𝑑Δℎ
𝑅2 ∼ 10−5, (10)

06 m is the radius of Mars, 𝑑 ∼ 104𝑚 is the thickness of the aquifer and Δℎ ∼ 103 m is the elevation
groundwater table across the aquifer. Here, we have approximated 𝐴𝑠 ∼ 𝑅2 and 𝐴x ∼ 𝑅 and Darcy’s law
𝑅. This simple estimate is identical to the 𝑟∕𝐾 ratio obtained from the analytic solution and computed

erical models (see SI Section S1). It is noteworthy that four methods produced equivalent 𝑟∕𝐾 values.
ck of the envelope calculation in equation 10, the analytic solutions in equation 9, our complex numerical
evious work by Andrews-Hanna et al. (2007;2010, Appendix C) produce nearly identical results.
previous work has computed specific recharge values for specific model parameters, our contribution
the linear relation between 𝑟 and 𝐾 that allows estimates of plausible steady recharge for any assumed
his is valuable precisely because 𝐾 is highly uncertain and the linear relationship allows for the

of different scenarios. For example, consider a steady hydrologic cycle in which a significant fraction
n infiltrates and recharges the aquifer. To align with published precipitation estimates, it would require
our model’s recharge by nearly two orders of magnitude (Figure 6d). The linear relation between 𝑟
thus require a two order of magnitude increase in the mean conductivity of the aquifer to keep upwelling
reprint submitted to Elsevier Page 10 of 15
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undwater upwelling as a function of recharge for an aquifer bounded by the Arabia shoreline and equal
lines in Hellas and Argyre. Recharge, 𝑟, is evenly distributed between -45◦ and 45◦ and 𝐾 = 10−7 m/s.
2 mm/yr. b) 𝑟 = 3 ⋅ 10−2 mm/yr. c) 𝑟 = 1 ⋅ 10−1 mm/yr. d) Percentage of the southern highlands area
roundwater upwelling as function of recharge with estimates of water availability (Stucky de Quay et al.,
rtical dashed line represents the preferred value of plausible recharge represented in panel b.

rabia Terra. This would require the entire 10 km thick aquifer to have the conductivity of karstic limestone
herry, 1977).
al variations in 𝐾 by several orders of magnitude are not unusual, the 𝐾 in our equations is the average
aquifer. This average includes rapid decay of the conductivity with depth (Shadab et al., 2023). As such,
hat the mean 𝐾 of the aquifer could increase to the value of 10−5 m/s, required to make the recharge
reprint submitted to Elsevier Page 11 of 15
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ith precipitation estimates of more than 1 mm/yr. If conductivity is lower than assumed here and in
(Clifford, 1993; Clifford and Parker, 2001; Hanna and Phillips, 2005), the 𝑟∕𝐾-relation requires that

echarge in a steady hydrologic cycle is orders of magnitude less than published precipitation estimates
., 2020; Wordsworth et al., 2015). It should be noted that the precipitation estimates are spatially variable.
esents both spatially and temporally averaged rates, and this may result in higher recharge values locally.
order of magnitude difference between the precipitation estimates and groundwater recharge can only be

few possible mechanisms.
above considerations assume a steady hydrological system because the model presented is at steady state.
rs’ hydrological activity is believed to occur during short climatic excursions that produce favorable
precipitation (Grotzinger et al., 2014; Wordsworth et al., 2015; Stucky de Quay et al., 2021). In this

echarge estimates should be interpreted as average over hydrologically active and inactive periods. As
arge during active periods would almost certainly exceed steady-state values. The large discrepancy
teady-state recharge fluxes found here and published estimates of precipitation can likely be explained
ion of several processes.
est way to explain the order-of-magnitude discrepancy between the published precipitation estimates
is that both are correct. This would require most precipitation to form runoff rather than recharge the

ifer. It is likely that a combination of a run-off driven system and a delayed transient aquifer response to
most likely scenario capable of producing published precipitation estimates with low enough recharge

uced the observed geology.
ent response of the groundwater table to individual ephemeral precipitation events would depend on the
roundwater table below topography when the recharge event begins, as well as the duration and intensity
f the transient response time of the aquifer to rise and breach topography is longer than the timescale
ursions producing higher recharge values, the groundwater table may not breach the surface before the
s and the recharge declines. The transient aquifer response will be examined in future work and will have
or constraining the intensity and longevity of climatic events capable of producing recharge.
ther consideration would be Mars’ total water budget. If the Mars GEL (global equivalent layer) were

w, the evaporative loss would deplete the sources of precipitation and prevent recharge from continuing.
simulations with the Arabia Terra shoreline and our preferred recharge value of 3 ⋅ 10−2 mm/yr, the
f water contained in the Mars southern highlands aquifer is ∼ 670 m GEL , see SI Section S4.2 for

his is a median value compared to values in the literature that range from 100 to 1500 m (e.g., Scheller
However, if there was a significantly limited water budget or a substantial portion of the GEL was not
bsurface-surface-atmosphere exchange during the hydrologically active period, a lack of available water
ion source could limit recharge.
rk will focus on the transient response of groundwater table as well as the conditions required for

connection between the large basins. Each work will require modeling with a dynamic domain for
orithm was created in this work. As ocean and basin shorelines move in response to climatically
ation and precipitation, these groundwater-topography interactions must be accounted for. To do so,
equation must be modified, and this requires an estimate of 𝑟∕𝐾 (Bresciani et al., 2014, 2016).

ions
ical and numerical solutions for the Martian highlands aquifer show that the elevation of the groundwater
lled by the ratio of the mean recharge to the mean hydraulic conductivity of the aquifer. This ratio is a
geometry associated with the planetary dichotomy. It has implications for constraining the early Martian

se it allows for estimates of plausible recharge fluxes given any preferred values for aquifer conductivity.
y assumed conductivities of ∼ 10−7 m/s (permeability ∼ 10−14 m2) the mean groundwater recharge
nds is ∼ 10−2 mm/yr. This value is at the low end of previously proposed estimates and two orders
below estimates of precipitation. If the hydrologic cycle is at steady-state and published precipitation
correct, then our groundwater models imply that some combination of three possible factors can create
with higher values of precipitation. These possibilities include that most precipitation forms runoff, the
nse of the aquifer to recharge is sufficiently slow that widespread upwelling did not occur prior to the
e recharge event, and/or the total water available as surface sources of precipitation are exhausted prior
upwelling.
reprint submitted to Elsevier Page 12 of 15
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