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Fifth−order Finite Volume WENO in General

Orthogonally−curvilinear Coordinates

Mohammad Afzal Shadab

Department of Mechanical and Aerospace Engineering

Abstract

In this thesis, a high order reconstruction in the finite volume (FV) approach

is achieved by a more fundamental form of the fifth order WENO reconstruc-

tion in the framework of orthogonally−curvilinear coordinates, for solving hy-

perbolic conservation equations. The derivation employs a piecewise parabolic

polynomial approximation to the zone averaged values (Q̄i) to reconstruct the

right (q+
i ), middle (qMi ), and left (q−i ) interface values. The grid dependent

linear weights of the WENO are recovered by inverting a Vandermonde−like

linear system of equations with spatially varying coefficients. A scheme for

calculating the linear weights, optimal weights, and smoothness indicator on

a regularly−/irregularly−spaced grid in orthogonally−curvilinear coordinates is

proposed. A grid independent relation for evaluating the smoothness indicator is

derived from the basic definition. Finally, a computationally efficient extension

to multi-dimensions is proposed along with the procedures for flux and source

term integrations. Analytical values of the linear weights, optimal weights, and

weights for flux and source term integrations are provided for a regularly−spaced

grid in Cartesian, cylindrical, and spherical coordinates. Conventional fifth order

WENO−JS can be fully recovered in the case of limiting curvature (R → ∞).

The fifth order finite volume WENO−C (orthogonally−curvilinear version of

xiv



WENO) reconstruction scheme is tested for several 1D and 2D benchmark tests

involving smooth and discontinuous flows in cylindrical and spherical coordinates.
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Chapter 1

Introduction

High−order reconstruction represents the future of the computational physics [8].

Earlier considered as computationally expensive from engineering perspective,

high−order reconstruction has recently gained the attention of engineers and sci-

entists [8]. Some of the popular approaches in the field of computational fluid dy-

namics (CFD) include finite−difference method (FD) [9], finite−volume method

(FV) [10], and discontinuous−Galerkin finite−element method (DG−FEM) [11].

Finite−difference method in fluid dynamics is a nice approach to visualize the

flow physics, however, it originates from a very basic principle, control volume

in the Navier−Stokes (NS) equations tends to zero, which might not be correct

when the flow physics change with the scale, rendering the governing equation

invalid. DG−FEM is also a very popular approach emerged in 1990s, how-

ever, it suffers from two major drawbacks. The first drawback is the unphys-

ical evolution of high order derivatives, which causes a failure of this scheme

in the case of flows with shocks and the second one is the time step restric-

tion causing very high computational costs. On the other hand, finite−volume

methods are better in the sense that they represent the physics on the control

volume itself, relying on the conservation of a cell−averaged quantity which only

changes when there is a flux−imbalance across the interfaces and/or there ex-
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ists a source term. FV schemes are widely popular in the CFD community due

to their versatility and easy application on unstructured meshes according to

the geometries. An important part of these schemes is the high−order recon-

struction, which significantly reduces the computational time by its virtue of

attaining higher rates of convergence even on the coarse mesh. Finite volume

weighted essentially non−oscillatory (WENO) reconstruction scheme represents

the state of art numerical methods in one− (1D) and two− dimensional (2D)

hyperbolic conservation laws [2, 12, 13, 14, 15]. Finite volume methods deal

with the volume averages, which changes only when there is an imbalance of

the fluxes across the control volume [2]. Flux evaluation at an interface requires

an important task of reconstructing the cell averaged value at the interface [2].

High order reconstruction is preferred for the cases of complex flow phenomena

including discontinuous flows, smooth flows with turbulence [16], aeroacoustics

[16], and magnetohydrodynamics (MHD) [17, 18, 19]. In a plethora of reconstruc-

tion techniques including pth order accurate essentially non−oscillatory (ENO)

scheme [20], second order total variation diminishing (TVD) methods [2], discon-

tinuous Galerkin methods [16], and modified piecewise parabolic method (PPM)

[2, 21, 22, 23], WENO stands a chance by its virtue of attaining a convexly com-

bined (2p− 1)th order of convergence for smooth flows aided with a novel ENO

strategy for maintaining high order accuracy even for the discontinuous flows

[2, 20].

The conventional WENO scheme is specifically designed for the reconstruction

in Cartesian coordinates on uniform grids [13, 14]. For an arbitrary curvilinear

mesh, the procedure of using a Jacobian, in order to map a general curvilinear

mesh to a uniform Cartesian mesh, is employed [20]. However, the employ-

ment of Cartesian-based reconstruction scheme on a curvilinear grid suffers from

a number of drawbacks, e.g., in the original PPM paper [21], reconstruction

was performed in volume coordinates (than the linear ones) so that algorithm

2



for a Cartesian mesh can be used on a cylindrical/spherical mesh. However,

the resulting interface states became first order accurate even for smooth flows

[21]. Another example can be the volume average assignment to the geometri-

cal cell center of finite volume than the centroid [24, 25, 26]. The reconstruc-

tion in general coordinates can be performed with the aid of two techniques:

genuine multi−dimensional reconstruction and dimension−by−dimension recon-

struction [20]. Genuine multi−dimensional reconstruction is computationally

expensive and highly complicated since it considers all of the finite volumes

while constructing the polynomial [20]. A better approach is to perform a

dimension−by−dimension reconstruction since it consists of less expensive 1D

sweeps in every dimension and most of the problems of engineering interests are

considered in orthogonally−curvilinear coordinates like Cartesian, cylindrical,

and spherical coordinates with regularly−spaced and irregularly−spaced grids.

A breakthrough in the field of high order reconstruction in these coordinates is

the application of the Vandermonde−like linear systems of equations with spa-

tially varying coefficients [2]. It is reintroduced in the present work to build

a basis for the derivation of the high order WENO schemes. Mignone [2] re-

stricted the work to the usage of the third order WENO approach with the

weight functions provided by Yamaleev and Carpenter [27] and did not extend

it to multi−dimensions (2D and 3D). In Mignone’s paper [2], modified piecewise

parabolic method (PPM5) of order ∼ 2 − 3 gave better results when compared

with the modified third order WENO. However, the latter reconstruction scheme

gave consistent values for all the numerical tests performed. Also, there is a drop

of accuracy in the modified third order WENO scheme for discontinuous flow

cases [2] when the standard weights derived by Jiang and Shu [13] are used, as

they are specifically restricted to the Cartesian grids.

The motivation for the present work is to develop a fifth order finite volume

WENO−C reconstruction scheme in orthogonally−curvilinear coordinates for

3



regularly−spaced and irregularly−spaced grids. It is based on the concepts of

linear weights by Mignone [2] and optimal weights, smoothness indicators by

Jiang and Shu [13]. Also, the present work provides a computationally efficient

extension of this scheme to multi−dimensions and deals with the source terms

straightforwardly.

The present work is divided into five chapters. Chapter 2 includes the fifth or-

der finite volume WENO−C reconstruction procedure for regularly−spaced and

irregularly−spaced grids in orthogonally−curvilinear coordinates. A linear sta-

bility analysis of the proposed scheme is performed for a general scalar advection

equation in Chapter 3. It is followed by Chapter 4 in which 1D and 2D nu-

merical benchmark tests involving smooth and discontinuous flows in cylindrical

and spherical coordinates are presented. Finally, Chapter 5 concludes the thesis.

Appendix A at the end includes the analytical values of the weights required for

WENO−C reconstruction and flux/source term integration for standard uniform

grids.
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Chapter 2

Fifth order finite volume

WENO−C reconstruction

2.1 Finite volume discretization in curvilinear

coordinates

The scalar conservation law in an orthogonal system of coordinates (x1, x2, x3)

having the scale factors h1, h2, h3 and unit vectors (ê1, ê2, ê3) in the respective

directions, is given in Eq. (2.1).

∂Q

∂t
+∇.F = S (2.1)

where Q is the conserved quantity of the fluid, F = (F1, F2, F3) is the corre-

sponding flux vector, and S is the source term. The divergence operator is

further expressed in the form of Eq. (2.2).

∇.F =
1

h1h2h3

[
∂

∂x1

(h2h3F1) +
∂

∂x2

(h1h3F2) +
∂

∂x3

(h1h2F3)

]
(2.2)
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Eq. (2.1) is discretized over a computational domain comprising N1 × N2 × N3

cells in the corresponding directions with the grid sizes given in Eq. (2.3).

∆x1,i = x1,i+ 1
2
−x1,i− 1

2
, ∆x2,j = x2,j+ 1

2
−x2,j− 1

2
, ∆x3,k = x3,k+ 1

2
−x3,k− 1

2
(2.3)

For the sake of simplicity, the notation (i, j, k) is mentioned as i where i ∈ Z3; and

Z3 is a vector of coordinate index in the computational domain with 1 ≤ i ≤ N1,

1 ≤ j ≤ N2, and 1 ≤ k ≤ N3. Also, the position of a cell interface orthogonal

to any direction (d) is given by êd and it is denoted by i ± 1
2
êd. For example,

i± 1
2
ê1 refers to the i± 1

2
interfaces of the cell i in ê1 direction. The cell volume

is given in Eq. (2.4).

∆Vi,j,k =

∫ x
3,k+ 1

2

x
3,k− 1

2

∫ x
2,j+ 1

2

x
2,j− 1

2

∫ x
1,i+ 1

2

x
1,i− 1

2

h1h2h3dx1dx2dx3 (2.4)

The flux Fd is averaged over the surface−area Ad of the interface i + 1
2
ê1, as

given in Eq. (2.5).

F̃1,i+1
2
ê1

=
1

A1,i+1
2
ê1

∫ x
3,k+ 1

2

x
3,k− 1

2

∫ x
2,j+ 1

2

x
2,j− 1

2

F1h2h3dx2dx3 (2.5)

where the cross−sectional area A1,i+1
2
ê1

is provided in Eq. (2.6). Here the scale

factors h2, h3 are the functions of the position vector at the interface i + 1
2
ê1.

A1,i+1
2
ê1

=

∫ x
3,k+ 1

2

x
3,k− 1

2

∫ x
2,j+ 1

2

x
2,j− 1

2

h2h3dx2dx3 (2.6)

Similarly, the expressions for the other directions (d = 2, 3) can be obtained by

cyclic permutations. The final form of the discretized conservation law can be

derived by integrating Eq. (2.1) over the cell volume and applying the Gauss

theorem to the flux term yielding Eq. (2.7), where Q̄i and S̄i are respectively the

6



conservative variable and the source term averaged over the finite volume i.

∂

∂t
Q̄i +

1

∆Vi

∑
d

[
(AdF̃d)i+ 1

2
êd
− (AdF̃d)i− 1

2
êd

]
= S̄i (2.7)

In cylindrical coordinates, (x1, x2, x3)≡(R, θ, z), (h1, h2, h3)≡(1, R, 1), and Eq.

(2.7) transforms into Eq. (2.8).

∂

∂t
Q̄i = −

(F̃RR)i+1
2
êr
− (F̃RR)i−1

2
êr

∆VR,i
−

(F̃θ)i+1
2
êθ
− (F̃θ)i−1

2
êθ

Ri∆θj

−
(F̃z)i+1

2
êz
− (F̃z)i−1

2
êz

∆zk
+ S̄i

(2.8)

where (F̃R, F̃θ, F̃z) are the surface averaged flux vector (F) components in (R, θ, z)

directions and ∆VR,i = (R2
i+ 1

2

−R2
i− 1

2

)/2 is the cell radial volume.

In spherical coordinates, (x1, x2, x3)≡(r, θ, φ), (h1, h2, h3)≡(1, r, rsinθ), and Eq.

(2.7) transforms into Eq. (2.9).

∂

∂t
Q̄i = −

(F̃rr
2)i+1

2
êr
− (F̃rr

2)i−1
2
êr

∆Vr,i
−

(F̃θsinθ)i+1
2
êθ
− (F̃θsinθ)i−1

2
êθ

r̃i∆µj

−∆θj
∆µj

(F̃φ)i+1
2
êφ
− (F̃φ)i−1

2
êφ

r̃i∆φk
+ S̄i

(2.9)

where (F̃r, F̃θ, F̃φ) are the surface averaged flux vector components in (r, θ, φ)

directions and the remaining geometrical factors are provided in Eq. (2.10).

∆Vr,i =
(r3
i+ 1

2

− r3
i− 1

2

)

3
; r̃i =

2

3

(r3
i+ 1

2

− r3
i− 1

2

)

(r2
i+ 1

2

− r2
i− 1

2

)
; ∆µj = cosθj− 1

2
− cosθj+ 1

2

(2.10)
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2.2 Evaluation of the linear weights

A non−uniform grid spacing with zone width ∆ξi = ξi+ 1
2
− ξi− 1

2
is considered

having ξ ∈ (x1, x2, x3) as the coordinate along the reconstruction direction and

ξi+ 1
2

denoting the location of the cell interface between zones i and i + 1. Let

Q̄i be the cell average of conserved quantity Q inside zone i at some given time,

which can be expressed in form of Eq. (2.11).

Q̄i =
1

∆Vi

∫ ξ
i+ 1

2

ξ
i− 1

2

Qi(ξ)
∂V
∂ξ
dξ (2.11)

where the local cell volume ∆Vi of ith cell in the direction of reconstruction given

in Eq. (2.12)

∆Vi =

∫ ξ
i+ 1

2

ξ
i− 1

2

∂V
∂ξ
dξ (2.12)

∂V
∂ξ

is a one−dimensional Jacobian whose values for volumetric operations are

summarized in Table 2.1 for structured grids in standard coordinates.

Table 2.1: One−dimensional Jacobian
(
∂V
∂ξ

)
values for the regularly−spaced grids

for volumetric operations

Coordinates Direction(s) ∂V
∂ξ

Cartesian x, y, z ξ0

Cylindrical
R ξ1

θ, z ξ0

Spherical

r ξ2

θ sinξ

φ ξ0

Now, our aim is to find a pth order accurate approximation to the actual solution
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by constructing a (p− 1)th order polynomial distribution, as given in Eq. (2.13).

Qi(ξ) = ai,0 + ai,1(ξ − ξci ) + ai,2(ξ − ξci )2 + ...+ ai,p−1(ξ − ξci )p−1 (2.13)

where ai,n corresponds to a vector of the coefficients which to be determined and

ξci can be taken as the cell centroid. However, the final values at the interface

are independent of the particular choice of ξci and one may as well set ξci = 0

[2]. Unlike the cell center, the centroid is not equidistant from the cell interfaces

in the case of curvilinear coordinates, and the cell averaged values are assigned

at the centroid [2]. Further, the method has to be locally conservative, i.e., the

polynomial Qi(ξ) must fit the neighboring cell averages, satisfying Eq. (2.14).

∫ ξ
i+s+ 1

2

ξ
i+s− 1

2

Qi(ξ)
∂V
∂ξ
dξ = ∆Vi+sQ̄i+s for − iL ≤ s ≤ iR (2.14)

where the stencil includes iL cells to the left and iR cells to the right of the ith

zone such that iL + iR + 1 = p. Implementing Eqs. (2.12) and (2.13) in Eq.

(2.14) along with a simplification leads to a p × p linear system (2.15) in the

coefficients {ai,n}.


βi−iL,0 . . . βi−iL,p−1

...
. . .

...

βi+iR,0 . . . βi+iR,p−1




ai,0
...

ai,p−1

 =


Q̄i−iL

...

Q̄i+iR

 (2.15)

where

βi+s,n =
1

∆Vi+s

∫ ξ
i+s+ 1

2

ξ
i+s− 1

2

(ξ − ξci )n
∂V
∂ξ
dξ (2.16)

Eq. (2.15) can be written in the short notation using a p× p matrix B with the
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rows ranging from s = −iL, ..., iR and columns ranging from n = 0, ..., p− 1.

p−1∑
n=0

Bsnai,n = Q̄i+s (2.17)

However, evaluation of the weights ai,k in Eqs. (2.15) and (2.17) requires zone

averaged values Q̄i, thus, increasing the computational cost of the whole process

as it needs to be evaluated at every time step. The coefficients {ai,n} extracted

from Eq. (2.15) will also satisfy condition (2.18).

q+
i = lim

ξ→ξ(−)

i+ 1
2

Qi(ξ) =

p−1∑
n=0

ai,n(ξi+ 1
2
−ξci )n; q−i = lim

ξ→ξ(+)

i− 1
2

Qi(ξ) =

p−1∑
n=0

ai,n(ξi− 1
2
−ξci )n

(2.18)

A more efficient approach for evaluating left and right interface values is using a

linear combination of the adjacent cell averaged values [2], as given in Eq. (2.19).

q±i =

iR∑
s=−iL

w±i,sQ̄i+s (2.19)

From Eq. (2.17), after inverting the matrix B, we get relation (2.20).

ai,n =

iR∑
s=−iL

CnsQ̄i+s (2.20)

where C = B−1 corresponds to the inverse of matrix B, which will exist only if

matrix B exists and is nonsingular.

After combining Eqs. (2.18) and (2.20), we get

q±i =

p−1∑
n=0

( iR∑
s=−iL

CnsQ̄i+s

)
(ξi± 1

2
− ξci )n =

iR∑
s=−iL

Q̄i+s

( p−1∑
n=0

Cns(ξi± 1
2
− ξci )n

)
(2.21)

By comparing Eqs. (2.19) and (2.21), we can extract the matrix of weights w±i,s.

w±i,s =

p−1∑
n=0

Cns(ξi± 1
2
− ξci )n (2.22)
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Since, Cns = (CT)sn = ((BT)−1)sn, Eq. (2.22) can be finally written in the form

of Eq. (2.23).
iR∑

s=−iL

(BT )nsw
±
i,s = (ξi± 1

2
− ξci )n (2.23)

Therefore, it is evident that the weights w±i,s are shown to satisfy Eq. (2.24) [2],

which is the fundamental equation for reconstruction in orthogonally−curvilinear

coordinates.


βi−iL,0 . . . βi−iL,p−1

...
. . .

...

βi+iR,0 . . . βi+iR,p−1


T 

w±i,−iL
...

w±i,iR

 =


1

...

(ξi± 1
2
− ξci )p−1

 (2.24)

Also, the grid dependent linear weights (w±i,s) satisfy the normalization condition

(2.25)[2].

iR∑
s=−iL

w±i,s = 1 (2.25)

Some important remarks on the linear weights in the proposed scheme are as

follows:

1. Eq. (2.24) is capable of evaluating the grid generated linear weights for

any regularly−/irregularly−spaced mesh in orthogonally−curvilinear co-

ordinates. It is observed that these weights are independent of the mesh

size for standard regularly−spaced grid cases, but depend on the grid type.

Also, they can be evaluated and stored (at a nominal cost) independently

before the actual computation, after the grid type is finalized.

2. For fifth order WENO, three sets of third order (p = 3) stencils (Sk) are

chosen namely

11



• S0(i− 2, i− 1, i) :: −iL = 2, iR = 0

• S1(i− 1, i, i+ 1) :: −iL = 1, iR = 1

• S2(i, i+ 1, i+ 2) :: −iL = 0, iR = 2.

In addition to this, another symmetric stencil S5 :: (i−2, i−1, i, i+1, i+2)

is used to extract the values of the optimal weights in the subsection 2.3.

3. The final interface values (2.19) and the linear weights depend only on the

order of the reconstruction polynomial and not on ξci , which can be set to

zero [2].

4. The values are simplified when the Jacobian is a simple power of ξ i.e.

∂V
∂ξ

= ξm. Then, βi+s,n of Eq. (2.16) can be written in the simplified form

(2.26).

βi+s,n =
m+ 1

n+m+ 1

ξn+m+1
i+s+ 1

2

− ξn+m+1
i+s− 1

2

ξm+1
i+s+ 1

2

− ξm+1
i+s− 1

2

(2.26)

5. For the spherical−meridional coordinate, βi+s,n of Eq. (2.16) becomes

highly complex as (∂V
∂ξ

= sinξ). The value of βi+s,n can be computed

from Eq. (2.27) and needs to be solved numerically e.g. by using LU

decomposition method.

βi+s,n =
1

cosξis− − cosξis+

n∑
k=0

k!

n
k

[ξn−kis−
cos

(
ξis−+

kπ

2

)
−ξn−kis+

cos

(
ξis++

kπ

2

)]
(2.27)

where is± refers to i+ s± 1
2
.

6. For non−standard grids, ∂V
∂ξ

is not a simple function, which makes the

direct integration highly complex and time consuming. Therefore, such

cases are tackled using numerical integration of the Eq. (2.16) and then

matrix inversion of the Eq. (2.24).
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7. Eq. (2.24) can also be used to compute the point−values of Q(ξ) at any

other points than the interfaces e.g. the cell center (qMi ). The value at the

cell center is obtained by setting the right hand side of the matrix (2.24)

as (1, 0, 0, ..., 0)T with ξci = 0, which is important in the case of nonlinear

systems of equations where the reconstruction of the primitive variables is

done instead of the conserved variables [2].

8. The linear positive (w+
i ), middle (wMi ) and negative (w−i ) weights for the

WENO reconstruction for the standard cases of regularly−spaced grid in

Cartesian, cylindrical, and spherical coordinates are summarized in the

Appendices A.1.1, A.2.1, and A.3.1 respectively. The analytical solutions

for the spherical− meridional coordinate (θ) and irregularly−spaced grid

are highly intricate and case−specific respectively. Thus, they are not

mentioned in this paper as they need to be dealt numerically.

The weights and the stencil are denoted by wp±i,l,k and Sp±l respectively, where

k is sequence of the weight−applied cell with respect to the cell considered for

reconstruction (i), p is the order of reconstruction (p = iL+iR+1), l is the stencil

number, and ‘±’ represents the positive and negative weights i.e. weights for

reconstructing right (+) and left (−) interface values respectively. The derivation

of middle (mid−value) weights (wpMi,l,k) also follow the same procedure.

The reconstructed values qp±i,l represents the pth−order reconstructed value at

right (+) or left (−) interface of ith cell on stencil l. The formulation for the

interpolated values at the interface for the WENO reconstruction are given by

the linear system of Eq. (2.28), where iL and iR depend on the stencil l.

qp±i,l =

iR∑
s=−iL

wp±i,l,sQ̄i+s (2.28)
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2.3 Optimal weights

The weights which optimize the sum of the lower order interpolated variables

into a higher order accurate variable, are known as optimal weights [13, 14]. For

the case of fifth order WENO interpolation, the third order interpolated variables

are optimally weighed in order to achieve fifth order accurate interpolated values

as given in Eq. (2.29) for the case of p = 3.

q
(2p−1)±
i,0 =

p−1∑
l=0

C±i,lq
p±
i,l (2.29)

where C±i,l is the optimal weight for the positive/negative cases on the ith finite

volume. CM
i,l for mid−value weights also follow the same procedure. So, Eqs.

(2.24) and (2.26) are used again to evaluate the weights for the fifth order (2p−

1 = 5) interpolation (iL = 2, iR = 2). The fifth order interpolated variable at the

interface is equated with the sum of optimally weighed third order interpolated

variables, as given in Eq. (2.29). The optimal weights C±i,l are evaluated by

equating the coefficients of Q̄ resulting in (2p − 1) equations with p unknowns.

For the fifth order WENO−C reconstruction, the case is simplified to a system of

linear equations as given in Eq. (2.30), by selecting Q̄i−2, Q̄i, and Q̄i+2 coefficients

to reduce the computational cost.

C±i,0 =
w5±
i,0,−2

w3±
i,0,−2

; C±i,2 =
w5±
i,0,+2

w3±
i,2,+2

; C±i,1 =
w5±
i,0,0 − C±i,0w3±

i,0,0 − C±i,2w3±
i,2,0

w3±
i,1,0

(2.30)

Some remarks regarding the optimal weights are given below:

1. The summation of the optimal weights always yield unity value and their

value is independent of the coefficients of Q̄ equated in Eq. (2.29).

2. Since weights are independent of the conserved variables, optimal weights

are also constants for a selected orthogonally−curvilinear mesh and can be

computed in advance with a little storage cost.
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3. The analytical values in the Cartesian, cylindrical−radial, and spherical−

radial coordinates for a regularly−spaced grid are provided in Appendices

A.1.3, A.2.3, and A.3.3 respectively.

4. The only case where the optimal weights are mirror−symmetric is of the

regularly−spaced grid in Cartesian coordinates. The optimal weights are

the same as of the conventional fifth order WENO reconstruction [12, 13]

in this case and also when i → ∞ (limiting curvature) in the case of

regularly−spaced grid cases in the cylindrical−radial and spherical−radial

coordinates.

5. The weights for spherical−radial coordinates are much more complex. For

spherical coordinates, it is advised to use the fifth order weights and linear

weights to evaluate the optimal weights or use direct numerical operation

after mesh generation since the analytical values of optimal weights con-

tain high order (i16) terms. Moreover, the concept of optimal weights can

be completely removed with the aid of WENO−AO type modification by

Balsara et al. [28] to the present work. However, the present work remains

general and provides the backbone to such construction techniques.

2.4 Smoothness indicators and the nonlinear weights

The smoothness indicators are the nonlinear tools employed to differentiate in

between a smooth and a discontinuous flows [13, 14] on a stencil. They are em-

ployed in order to discard the discontinuous stencils and maintain a high order

accuracy even for the discontinuous flows. From the original idea of [13], the

present analysis is performed. Jiang and Shu [13] proposed a novel technique

of evaluating the smoothness indicators (ISi,l). Since, for a regularly− and

irregularly−spaced grid, (ISi,l) varies with the grid index i, therefore we will

15



use (ISi,l) later in this paper. The idea involves minimization of the L2−norm of

the derivatives of the reconstruction polynomial, thus, emulating the idea of min-

imizing the total variation of the approximation. The mathematical definition

of the smoothness indicator is given in Eq. (2.31) [12, 13].

ISi,l =

p−1∑
m=1

∫ ξ
j+ 1

2

ξ
j− 1

2

(
dm

dξm
Qi,l(ξ)

)2

∆ξ2m−1
i dξ, l = 0, ..., p− 1 (2.31)

To evaluate the value of ISi,l, a third order polynomial interpolation on ith cell is

required using positive and negative reconstructed values by stencil Sl, as given

in Eq. (2.32).

Qi,l(ξ) = ai,l,0 + ai,l,1(ξi − ξci ) + ai,l,2(ξi − ξci )2 (2.32)

Let ξi+1/2− ξci = ξ+
i , ξi−1/2− ξci = −ξ−i , and ξ+

i + ξ−i = ∆ξi. The polynomial will

satisfy the constraints (2.33) for all kinds of finite volumes.∫ ξ
i+ 1

2

ξ
i− 1

2

Qi,l(ξ)dξ = Q̄i , q±i,l = Qi,l(ξi± 1
2
) (2.33)

Finally, we get the values of the ai,l,0, ai,l,1, and ai,l,2.

ai,l,0 =
6Q̄iξ

−
i ξ

+
i + q+

i,lξ
−
i (ξ−i − 2ξ+

i ) + q−i,lξ
+
i (ξ+

i − 2ξ−i )

(ξ+
i + ξ−i )2

ai,l,1 =
2q−i,l(ξ

−
i − 2ξ+

i )− 6Q̄i(ξ
−
i − ξ+

i )− 2q+
i,l(ξ

+
i − 2ξ−i )

(ξ+
i + ξ−i )2

ai,l,2 = 3
(q±i,l − 2Q̄i + q±i,l)

(ξ+
i + ξ−i )2

(2.34)

For the regularly−spaced grids, the values of ξ+ and ξ− are constant throughout

the grid, which are given below for the standard coordinates.

• Cartesian coordinates:

(x, y, z) direction: ξ+ = ξ− = ∆ξ
2

• Cylindrical coordinates:

Radial (R) direction: ξ+ = ∆R

(
1
2
− 1

12i−6

)
, ξ− = ∆R

(
1
2

+ 1
12i−6

)
where i = ∆R/Ri+1/2

(θ, z) direction: ξ+ = ξ− = ∆ξ
2
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• Spherical coordinates:

Radial (r) direction: ξ+ = ∆r

(
1
2
− 2i−1

4(3i2−3i+1)

)
, ξ− = ∆r

(
1
2

+ 2i−1
4(3i2−3i+1)

)
where i = ∆r/ri+1/2

Meridional (θ) direction: ξ+ = θi+ 1
2
− θci , ξ− = −(θci − θi− 1

2
)

where θci =
θ
i− 1

2
cosθ

i− 1
2
−sinθ

i− 1
2
−θ

i+ 1
2
cosθ

i+ 1
2

+sinθ
i+ 1

2

cosθ
i− 1

2
−cosθ

i+ 1
2

(φ) direction: ξ+ = ξ− = ∆φ
2

These values on a regularly−spaced grid in Cartesian coordinates (ξ+ = ξ− = ∆ξ
2

)

transform relation (2.31) into the one given in [13, 29].

Now, putting the values of ai,l,0, ai,l,1, and ai,l,2 obtained from Eq. (2.34) in

Eq. (2.32) and then finally evaluating the smoothness indicator from Eq. (2.31)

yields the following fundamental relation (2.35) for evaluating the smoothness

indicators in the proposed scheme.

ISi,l = 4(39Q̄2
i − 39Q̄i(q

−
i,l + q+

i,l) + 10((q−i,l)
2 + (q+

i,l)
2) + 19q−i,lq

+
i,l) (2.35)

Some remarks regarding the smoothness indicators are as follows:

• Eq. (2.35) is a general relation for every standard grid and depends only

on the third order reconstructed variables at the interface (q±i ).

• q±i are the third order reconstructed variables obtained from Eq. (2.28)

after using suitable grid dependent linear weights.

• For a regularly−spaced grid in Cartesian coordinates, the formulation for

fifth order WENO−C is the same as of WENO−JS [12, 13, 29] after the

linear weights are substituted.

The nonlinear weight (ω±i,l) for the WENO−C interpolation is defined as follows

[12, 13].

ω±i,l =
α±i,l∑p−1
l=0 α

±
i,l

l = 0, 1, 2 (2.36)
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where

α±i,l =
C±i,l

(ε+ ISi,l)2
l = 0, 1, 2 (2.37)

where ε is a small positive number used to avoid denominator becoming zero [30].

Its value is a small percentage of the typical size of the reconstructed variable

Q̄i in such a way that Eq. (2.37) stays scale invariant [30]. Typically, its value

is chosen to be 10−6 [13, 30, 29]. The final interpolated interface values are

evaluated from Eq. (2.38).

q
(2p−1)±
i =

p−1∑
l=0

ωp±i,l q
p±
i,l (2.38)

2.5 Extension to multi-dimensions

The interface values calculated after the initial application are the point values

only when the domain is 1D. For 2D and 3D domains, the reconstructed variables

are line and area average values respectively [2, 31, 32]. If these values are used to

evaluate flux, the scheme drops down to the second order of accuracy [2, 31, 32].

Buchmuller and Helzel [32] proposed a very simple and effective way of achieving

the original order of accuracy, just by using one point at each boundary. In this

section, we are simply extending their work from Cartesian grids to general grids

in orthogonally−curvilinear coordinates.

For the sake of simplicity, a 2D grid in orthogonally-curvilinear coordinates hav-

ing unit vectors ê1 and ê2 in the corresponding orthogonal directions is consid-

ered, as shown in Fig.2.1. After reconstructing the left and the right interface

averaged values in the first WENO sweep, the second sweep is performed to yield

the point values. For the 3D case, line averaged values are yielded at this point

and thus, require another reconstruction of line averaged values in the direction

orthogonal previous reconstructions to obtain the point values. The Jacobian

values for the conversion from volume averaged value to point values are sum-
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Figure 2.1: High order interface flux evaluation procedure. Left: Mid−point

value reconstruction at each interface inside a cell using adjacent interface average

values. Right: Line averaged flux evaluation by solving the Riemann problem at

each mid−point and averaging using five adjacent points

marized in Table 2.1. Since this is the same principle as what we have already

described in Sections 2.2 and 2.3, the theory and derivation are not discussed

again. However, this time, the line average values are converted to the point

values at the mid−point of the interface with the aid of adjacent interfaces’

line averaged values. Also, since the quantities have been reconstructed using

WENO scheme in the first face−normal sweep (blue−colored left face in ê2 di-

rection), as shown in Fig.2.1 (left), the second sweep of interface in the tangential

direction ê1 doesn’t require WENO procedure because it already contains the

required smoothness information. Thus, fifth order accurate weights required for

the mid−point value evaluation can be directly calculated by considering ξ in

ê1 direction with the same fifth order centered stencil, ξci = 0, and substituting

ξi in the place of ξi± 1
2

in Eq. (2.24). The values of the weights are the fifth

order weights in the corresponding direction as evaluated earlier in Section 2.3.

Then, the fluxes can be evaluated from the left and the right hand side conserved

variables at the interface by solving the Riemann problem [33]. In the future,

the method will be extended to gas−kinetic scheme (GKS) [34].

The evaluated fluxes at the mid−points of the interfaces are averaged using
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polynomial interpolation, as shown in Fig. 2.1. One-dimensional Jacobians for

flux integration are coordinate specific. Since the final integrated value is a

surface averaged value, it is inherently related only to the corresponding two

dimensions of that surface. For example, while integrating in spherical (r − θ)

plane, the one−dimensional Jacobians are ξ (not ξ2) and unity (not sinξ) in r and

θ directions respectively. This is because the averaging procedure is independent

of the third dimension φ which adds rdφ term to the integration. So, the altered

one−dimensional Jacobians for 2D planar averaging are summarized in Table

2.2.

Table 2.2: One−dimensional Jacobian
(
∂V
∂ξ

)
values for interface flux reconstruc-

tion for the regularly−spaced 3D grids

Grid type Face coordinates (i− j) ∂Vi
∂ξi

∂Vj
∂ξj

Cartesian (x− y),(y − z),(x− z) 1 1

Cylindrical
(r − θ) ξ 1

(r − z),(θ − z) 1 1

Spherical
(r − θ),(r − φ) ξ 1

(θ − φ) sinξ 1

Consider a pth order accurate polynomial of any variable, say flux Q in this case,

joining p consecutive points, say mid−points of the interface as represented in

Fig. 2.1 (right). It can be expressed in the same form as provided in Eq. (2.13),

which takes the matrix form given in Eq. (2.39).

Qi(ξ) =
(

1 (ξ − ξci ) . . . (ξ − ξci )p−1

)


ai,0

ai,1
...

ai,p−1


(2.39)

But this time, instead of calculating the point values from the line averaged
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values, vice−versa operation is performed. Eq. (2.13) is valid for the values from

i − iL (leftmost value) to i + iR (rightmost value), where iL + iR + 1 = p. A

system of p equations is obtained after substituting the values at each considered

point, the matrix form of which is given in Eq. (2.40).


Qi,−iL

Qi,−iL+1

...

Qi,iR


=


1 (ξi−iL − ξci ) . . . (ξi−iL − ξci )p−1

1 (ξi−iL+1 − ξci ) . . . (ξi−iL+1 − ξci )p−1

... . . .
. . .

...

1 (ξi+iR − ξci ) . . . (ξi+iR − ξci )p−1




ai,0

ai,1
...

ai,p−1


(2.40)

where Q is any-arbitrary variable which needs to be averaged in
[
ξi− 1

2
, ξi+ 1

2

]
. It

can be written in a much simpler matrix form given in Eq. (2.41).

[Q] = [XI][A] (2.41)

where [Q] = [Qi,−iL , Qi,−iL+1, ..., Qi,iR ]T , [XI] =


1 (ξi−iL − ξci ) . . . (ξi−iL − ξci )p−1

1 (ξi−iL+1 − ξci ) . . . (ξi−iL+1 − ξci )p−1

... . . .
. . .

...

1 (ξi+iR − ξci ) . . . (ξi+iR − ξci )p−1


,

and [A] = [ai,0, ai,1, ..., ai,p−1]T

Using the same procedure as described in Sections 2.2 and 2.3 and performing

the average of the polynomial as given in Eq. (2.39) similar to Eq. (2.11) over

the domain [ξi−1/2, ξi+1/2], Eq. (2.42) is obtained.

Q̄i = [X̃I][A] (2.42)

where [X̃I] =

[
1

∆Vi

∫ ξi+ 1
2

ξ
i− 1

2

(ξ − ξci )0 ∂V
∂ξ
dξ, 1

∆Vi

∫ ξi+ 1
2

ξ
i− 1

2

(ξ − ξci )1 ∂V
∂ξ
dξ, ..., 1

∆Vi

∫ ξi+ 1
2

ξ
i− 1

2

(ξ − ξci )p−1 ∂V
∂ξ
dξ

]
From Eqs. (2.41) and (2.42), a general form of equation for integration from a
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lower dimension to a higher dimension can be derived, as given by Eq. (2.43).

Q̄i = {[X̃I][XI]−1}[Q] (2.43)

The term {[X̃I][XI]−1} includes the weights essential for converting the mid−point

interface flux values to the line averaged interface flux values, as shown in Fig.

2.1 (right). The next integration sweep in the transverse direction yields the

area−averaged flux values at the interface. The weights for integrations in the

corresponding directions are provided in Appendices A.1.4, A.2.4, and A.3.4

for the standard cases. Integration is preferred to be performed in the exact

vice−versa fashion as of reconstruction from the surface averages.

2.6 Source term integration

The source terms need to be dealt with extreme accuracy since any contamina-

tion in it might deteriorate the high order accuracy. The source term integration

is performed based on the works by Mignone [2]. For 1D test cases, it is pre-

ferred to reconstruct the mid−point of each cell using WENO procedure, weights

of which are provided in Appendices A.1.5, A.2.5, and A.3.5. Reconstructing

at Gauss−Lobatto 4 points (fifth order) instead of mid−point and performing

quadrature also yields the same results (not shown in the paper), therefore,

mid−point reconstruction with 3 point Simpson quadrature is advised.

The present work is a significant extension to [2] since point values are considered

for the source term evaluation, unlike the constant radius averages [2], which can

only achieve second order of accuracy in multi−dimensional problems [31, 32].

The theory for deriving the weights for the source term integration is exactly

the same as of flux integration given in Section 2.5. However, reconstruction

of the source−term integration is performed in every dimension, so the original
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one−dimensional Jacobians given in Table 2.1 can be used for the integration.

If non−radial integration is performed in the first place, ‘1/R’ factor in all of

the tangential terms at R = 0 will yield an infinite value, so only numerators

are integrated with the original weights. Moreover, since the source terms con-

tain ‘1/R’ factor, the radial integration weights need to be regularized [2], by

reconsidering the integration of Eq. (2.41) with a regularized factor of the source

term in Eq. (2.14) i.e.
∫ ξi+ 1

2
ξ
i− 1

2

Q̂i(ξ)
ξ

∂V
∂ξ
dξ = ∆ViQ̄i, where Q represents the original

source term (e.g. if Qi = (pi/Ri), then Q̂i = pi) in this context.

First integration tangential to the surface is performed in one direction involving

five points, to calculate the line average value of the source term. In the next

step, five line averaged values are integrated in the transverse direction to the

first sweep, tangential to the interface as shown in Fig. 2.2 (left). Finally, a face

normal interpolation is performed by utilizing the face averaged source terms of

six faces i.e. (i−5/2)+, (i−3/2)+, (i−1/2)+, (i+1/2)−, (i+3/2)−, (i+5/2)− faces,

as illustrated in Fig. 2.2 (right). The weights for the source term integration are

provided for the standard cases in A.1.5, A.2.5, and A.3.5.

In addition to the approach discussed above, interior points can also be used to

evaluate the source terms. For 1D tests, it is feasible to utilize the mid−point

values and perform Simpson quadrature to achieve fifth order accuracy using

the weights given in the appendix. However, evaluation at the interior points

becomes very expensive in multi−dimensions.

2.7 WENO−C final algorithm

The final algorithm for WENO−C reconstruction is as follows:

• After mesh−generation, calculate the values of linear and optimal weights,

fifth order middle (mid−value) interpolation weights, weights for interface
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Figure 2.2: Fifth order source term integration procedure. Left: Fifth order

using middle values. Right: Sixth order integration using face values

flux and source term integration in every dimension. For standard uniform

grids, weights are provided in the appendix.

• Convert the volume averaged conservative variables into the interface aver-

aged values by one−dimensional WENO sweeps in ê1,ê2, and ê3 directions

using the evaluated weights and smoothness indicator given in Eq. (2.39).

Refer to Sections 2.2, 2.3, and 2.4.

• Perform reconstruction of the interface averaged variables to mid−line av-

erages values in the plane of the interface. Perform another reconstruction

of the mid−line values in the orthogonal direction to the previous recon-

struction in the plane of the interface, to achieve the point value at the

mid−point of the interface. Refer to Section 2.5.

• Calculate flux at the mid−point of each interface by solving the Riemann

problem [33].

• Perform volume and surface averaging of the source and flux terms respec-

tively using dimensional−by−dimension approach by the weights provided

in the appendix. Key tip: If all of the source terms contain ‘1/R’ factor, it

is advised not to involve radius (1/R) term in the tangential averaging, if

performed before the radial averaging. While radial averaging, regularized
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relations are preferred, if the considered points contain R = 0 terms. Refer

to Sections 2.5 and 2.6.
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Chapter 3

Stability analysis of WENO−C

for hyperbolic conservation laws

For WENO−C to be practically useful, it is crucial that it enables a stable dis-

cretization for hyperbolic conservation laws when coupled with a proper time−

integration scheme. In this section, we analyze WENO−C scheme for model

problems involving smooth flow in 1−D Cartesian, cylindrical−radial, and spherical−radial

coordinates, based on a modified von Neumann stability analysis [35].

3.1 Model problem in 1D

We consider scalar advection equation (3.1) in 1D Cartesian, cylindrical−radial,

and spherical−radial coordinates.

∂Q

∂t
+

1

(∂V/∂ξ)
∂

∂ξ

((
∂V
∂ξ

)
Qv

)
= 0 ξ ∈ [0,∞], t > 0 (3.1)

where Q is the conserved variable, (∂V/∂ξ) = ξm is the one−dimensional Jaco-

bian where m = 0, 1, and 2 in Cartesian, cylindrical−radial, and spherical−radial
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coordinates. Boundary conditions are not considered in the present approach to

reduce the complexity of the analysis. Assuming a uniform grid 0 = ξ1 < ξ2 <

... < ξi < ... < ξ∞ = ∞ with ξi = i∆ξ and ξi+1 − ξi = ∆ξ ∀ i and (i ± 1/2)

denotes the boundaries of the finite volume i. In the finite volume framework,

Eq. (3.1) transforms into Eq. (3.2), which can be further approximated by

conservative scheme given in Eq. (3.3).

∂Q̄i

∂t
= − 1

∆Vi
(F (Q(ξi+1/2, t))− F (Q(ξi−1/2, t))) (3.2)

and

∂Q̄i

∂t
= − 1

∆Vi
(F̂i+1/2 − F̂i−1/2) (3.3)

where

Q̄(ξi, t) = − 1

∆Vi

∫ ξi+1/2

ξi−1/2

Q(ξ, t)

(
∂V(ξ, t)

∂ξ

)
dξ (3.4)

and

∆Vi =

∫ ξi+1/2

ξi−1/2

(
∂V(ξ, t)

∂ξ

)
dξ (3.5)

The numerical flux F̂i+1/2 is replaced by the Lax−Friedrichs flux, as given in Eq.

(3.6), with α =maxQ|F ′(Q)|.

~F .~n =
1

2

[
(~F (Q−) + ~F (Q+)).~n− α(Q+ −Q−)

]
(3.6)

where + and − denote right and left sides of an interface respectively. For this

particular problem, let v = 1 in Eq. (3.1). Therefore, only the values on the left

side of the interface are considered, i.e., F̂i+1/2 − F̂i−1/2 = [Q(∂V/∂ξ)]−i+1/2 −

[Q(∂V/∂ξ)]−i−1/2. For the time integration, we use a TVD Runge−Kutta (RK)

method. A n−stage RK method for the ODE Qt = L(Q) has the general form
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as shown in Eq. (3.7).

k0 = Q(t)

kI =
I−1∑
j=0

(αIjKj + βIj(kj)), I = 1, ..., n
(3.7)

where kI denotes the solution after I th stage, and Q(t + δt) = kn. An RK

method is total variation diminishing (TVD) if all the coefficients αIj and βIj

are nonnegative. The CFL coefficient of such a scheme is given by Eq. (3.8).

c = minI,k{αIk/βIk} (3.8)

For TVD RK order 3 scheme, the CFL coefficient is c = 1.

3.2 von Neumann stability analysis

Based on the von Neumann stability analysis, the semi−discrete solution can be

expressed as a discrete Fourier series, as given in Eq. (3.9).

Q̄i(t) =

N/2∑
k=−N/2

Q̂k(t)e
jiθk , ωk ∈ R (3.9)

where j =
√
−1. By the superposition principle, only one term in the series can

be used for analysis, as illustrated in Eq. (3.10).

Q̄i(t) = Q̂k(t)e
jiθk , θk = ωk∆ξ (3.10)

By substituting Eq. (3.10) in Eq. (3.3), we can separate the spatial operator L,
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as given in Eq. (3.11).

L = −
(F̂i+1/2 − F̂i−1/2)

∆Vi
= −

[Q(∂V/∂ξ)]−i+1/2 − [Q(∂V/∂ξ)]−i−1/2

∆Vi
= −z(θk)Q̄i

∆ξ
(3.11)

where the complex function z(θk) is the Fourier symbol. By substituting the

values of Q−i−1/2 and Q−i+1/2 using fifth order positive weights of cells (i−1) and i

respectively for a smooth solution, the value of z(θk) can be evaluated using Eq.

(3.12).

z(θk) =
m+ 1

i(m+1) − (i− 1)(m+1)

+2∑
l=−2

[
w5+
i,0,li

mejlθk − w5+
(i−1),0,l(i− 1)mej(l−1)θk

]
(3.12)

where index number i = ξi+1/2/∆ξ, (i − 1) = ξi−1/2/∆ξ and m = 0, 1, and 2

represents Cartesian, cylindrical−radial, and spherical−radial coordinates. Let

Q̄n
i = Q̄i(t

n) be the numerical solution at time tn = n∆t. We define the am-

plification factor g in Eq. (3.13) by substituting (3.10) into the fully−discrete

system.

Q̄n+1
i = g(ẑk)Q̄

n
i , ẑk = −σz(θk), k = −N/2, ..., N/2 (3.13)

where σ = ∆t/∆ξ. Therefore, the linear stability domain of an explicit time-

stepping scheme is St = {ẑ : |g(ẑ)| ≤ 1}. Also, we define the spectrum S of a

spatial discretization scheme in Eq. (3.14) [35].

S = {−z(θk) : θk ∈ 0,∆θ, 2∆θ, 2π}, ∆θ = 2π∆ξ (3.14)

The stability limit is thus the largest CFL number σ̃ such that the rescaled
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spectrum σ̃S lies inside the stability domain St.

σ̃S ∈ St (3.15)

For the third−order Runge−Kutta scheme, the amplification factor g is given in

Eq. (3.16).

g(z̃) = 1 + z̃ +
1

2
z̃2 +

1

6
z̃3 (3.16)

Boundaries of the stability domain ∂St = {z̃ : |g(z̃)| = 1} is found by setting

g(z̃) = ejφ and solving Eq. (3.17).

z̃3 + 3z̃2 + 6z̃ + 6 + 6ejφ = 0 (3.17)

As for the figures in this section, the stable and unstable regions are shown

as off−white and blue regions respectively for TVD RK order 3. The stability

domain depends on temporal discretization and is thus fixed irrespective of the

spatial discretization scheme.

Given the spectrum S and the stability domain St, the maximum stable CFL

number of this scheme can be computed by finding the largest rescaling parameter

σ̃, so that the rescaled spectrum still lies in the stability domain. Using interval

bisection, we find the CFL number of the proposed WENO−C scheme with TVD

RK order 3 time marching.

For the Cartesian case as shown in Fig. 3.1, the maximum CFL number value

obtained is 1.44, similar to a previous study [35]. It can be observed respectively

from Figs. 3.2 and 3.3 for cylindrical−radial and spherical−radial coordinates

that the spatial spectrums S differs with the index numbers i due to the geo-

metrical variation of the finite volume. Some regions (i = 1, 2) require boundary
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Figure 3.1: Rescaled spectrum (with maximum stable CFL number σ̃ = 1.44)

and stability domains of fifth−order WENO−C in Cartesian coordinates (m = 0)

in a complex plane

conditions and thus, are not considered in the present analysis. The values of

CFL number for cylindrical−radial and spherical−radial coordinates lie in be-

tween 1.45 to 1.52 and 1.25 to 1.52 respectively. As a final remark, it can be

concluded that the proposed scheme is A-stable with third or higher order of RK

method with an appropriate value of CFL number for this case.
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(a) i = 3, σ̃ = 1.45 (b) i = 5, σ̃ = 1.52

(c) i = 10, σ̃ = 1.50 (d) i = 20, σ̃ = 1.48

(e) i = 50, σ̃ = 1.46 (f) i = 100, σ̃ = 1.45

Figure 3.2: Rescaled spectrums (with maximum stable CFL number σ̃) and

stability domains of fifth−order WENO−C in cylindrical coordinates (m = 1)

in a complex plane for different index numbers i
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(a) i = 3, σ̃ = 1.28 (b) i = 5, σ̃ = 1.47

(c) i = 10, σ̃ = 1.52 (d) i = 20, σ̃ = 1.50

(e) i = 50, σ̃ = 1.48 (f) i = 100, σ̃ = 1.46

Figure 3.3: Rescaled spectrums (with maximum stable CFL number σ̃) and

stability domains of fifth−order WENO−C in spherical coordinates (m = 2) in

a complex plane for different index numbers i
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Chapter 4

Numerical tests

In this section, several tests on scalar and nonlinear system of equations are per-

formed to analyze the performance of the WENO−C reconstruction scheme. The

test cases include scalar advection (1D) on regularly−/irregularly−spaced grids,

smooth (1D) and discontinuous inviscid flows (1D/2D) governed by a system of

nonlinear equations (Euler equations) on regularly−spaced grids in cylindrical

and spherical coordinates. For the sake of comparison solely on the grounds of

the high order reconstruction, time marching in all WENO reconstructed 1D

test cases is achieved by explicit third order TVD Runge−Kutta scheme [36, 2].

For 2D test cases, explicit fifth order Runge−Kutta scheme [32], is employed

to reduce the computation time. Since high order spatial reconstruction with a

lower order time marching requires a lower effective value of CFL number (or

time step) to check the dominance of temporal errors over spatial errors, the

empirical formula to evaluate the time step is given in Eq. (4.1).

∆t = Ca

[
max

i

(
1

D

)∑
d

λd,i
(∆ld,i)(ss/tt)

]−1

(4.1)

where Ca is the CFL number, D is the number of spatial dimensions d, while ∆ld
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and λd are the grid length and maximum signal speed inside zone i in the direction

êd. ss and tt are the spatial and temporal orders of convergence respectively.

For all tests performed in this paper, the initial condition on the conserved vari-

ables is averaged over the corresponding finite volumes ∆Vi using seven−point

Gaussian quadrature in a dimension−by−dimension fashion. Numerical bench-

mark test cases for the scalar conservation laws are reported in Section 4.1, while

the verification tests for nonlinear systems are presented in Section 4.2. Errors

ε1 are computed using the L1 discrete norm defined in Eq. (4.2). In case of a

linear system, Q is a generic flow quantity while in case of a nonlinear system of

equations, error in density ρ is considered.

ε1(Q) =

∑
i

|Q̄i − Q̄ref
i |∆Vi∑

i

∆Vi
(4.2)

where summation is performed on all finite volumes ∆Vi with Q̄ref
i to be the

volume average of the reference (or exact) solution. Finally, the experimental

order of convergence (EOC) is computed from Eq. (4.3).

EOC =

log

(
εc1(Q)

εf1 (Q)

)

log

( D∏
d=1

Nf
d

D∏
d=1

Nc
d

) (4.3)

where the superscript c and f refer to the coarse and fine mesh respectively and

N is the number of finite volumes in êd direction.

4.1 Scalar advection tests

As a first benchmark, 1D scalar advection equations Eq. (4.5) in cylindrical−radial

and spherical−radial coordinates, and Eq. (4.9) in spherical−meridional coor-

dinates are solved. Two different tests (tests A and B) are performed on a
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regularly−spaced grid, while test A is also performed on an irregularly−spaced

grid. Test A subsumes a monotonic profile while test B is a more stringent test

involving a non−monotonic profile. For the irregularly−spaced grid, the grid

spacing increases linearly with the radial distance. The summation of all zone

lengths is fixed, i.e., length of the computational domain and the number of cells

N is given. A parameter Ratio is introduced in Eq. (4.4) which is an indicator

of the level of non−uniformity in the computational domain.

Ratio =
Grid spacing of any cell in an N−cell uniform grid

Grid spacing of the first cell (or the smallest cell) in an N−cell nonuniform grid
(4.4)

4.1.1 Advection equation in cylindrical−radial and spherical−

radial coordinates

The governing 1D scalar advection equation in cylindrical−radial and spherical−radial

coordinates is formulated in Eq. (4.5).

∂Q

∂t
+

1

ξm
∂

∂ξ
(ξmQv) = 0 (4.5)

where the ξm is the one−dimensional Jacobian and therefore, m = 1 and 2

respectively correspond to cylindrical−radial and spherical−radial coordinates.

Velocity v varies linearly with the radial coordinate ξ i.e. v = αξ and α = 1. Eq.

(4.5) admits an exact solution given in Eq. (4.6).

Qref (ξ, t) = e−(m+1)αtQ(ξe−αt, 0) (4.6)

where Q(ξe−αt, 0) is the initial condition. For the present case, a Gaussian profile,
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given in Eq. (4.7), is employed.

Q(ξ, 0) = e−a
2(ξ−b)2

(4.7)

where a and b are constants. For the two test cases, {a = 10, b = 0} is employed

for test A which yields a monotonically decreasing profile and {a = 16, b = 1/2}

is employed for test B corresponds to a more stringent non−monotonic profile

having a maxima at ξ = 1/2. The computational domain extends from ξ = 0

to ξ = 2 consisting of N zones, where boundary conditions include symmetry

at the origin (ξ = 0) and zero−gradient at ξ = 2. Computations are performed

until t = 1 with CFL number of 0.9 and the interface flux is computed using Eq.

(4.8).

F̃i+ 1
2

=
1

2

[
vi+ 1

2
(Q−i+1 +Q+

i )− |vi+ 1
2
|(Q−i+1 +Q+

i )

]
(4.8)

Fig. 4.1 shows the spatial variation of Q with the radial distance (ξ = R) for the

two test cases (tests A and B) on a uniform grid in cylindrical−radial (top) and

spherical−radial (bottom) coordinates. For a monotonically decreasing profile

(test A), even N ≥ 64 gives accurate results for both the test cases. However,

for test B, N = 64 yields slightly lower peaks than the exact solution. When

compared with WENO3 results and Fig. 2 of [2], a slightly higher peak is observed

for test A, since it is a less severe test case. The differences are much more

prominent while performing test B. It can be observed that the peaks of N = 64

for test B in Fig. 4.1 are significantly higher than earlier published results [2].

From the experimental order of convergence (EOC) Table 4.1, it is clear that

WENO−C approaches to the desired fifth order of convergence with a rapid re-

duction in errors when compared with WENO3[2]. The same tests performed in

Cartesian coordinates using conventional WENO and present WENO−C (both

are equivalent) showed same errors and order of convergence (not shown here),
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Table 4.1: L1 norm errors and experimental order of convergence (EOC) for

radial advection test in cylindrical−radial and spherical−radial coordinates at

t = 1 for test A {a = 10, b = 0} and test B {a = 16, b = 1/2}.

Cylindrical Spherical

Test A Test B Test A Test B

N ε1(Q) OL1 ε1(Q) OL1 ε1(Q) OL1 ε1(Q) OL1

WENO−C (Proposed scheme)

32 9.22E-05 − 1.07E-02 − 1.19E-05 − 3.94E-03 −

64 1.14E-05 3.016 2.10E-03 2.356 1.28E-06 3.208 7.94E-04 2.312

128 4.91E-07 4.537 1.95E-04 3.425 5.28E-08 4.602 7.44E-05 3.415

256 1.94E-08 4.663 9.39E-06 4.378 2.16E-09 4.610 3.58E-06 4.378

512 6.20E-10 4.965 3.14E-07 4.900 6.34E-11 5.093 1.19E-07 4.906

1024 5.81E-11 3.415 1.02E-08 4.941 4.53E-12 3.806 3.88E-09 4.942

WENO3[2]

32 2.12E-04 − 1.26E-02 − 2.22E-05 − 4.79E-03 −

64 2.91E-05 2.871 3.95E-03 1.682 2.84E-06 2.974 1.50E-03 1.682

128 4.46E-06 2.712 8.24E-04 2.267 4.70E-07 2.601 3.15E-04 2.254

256 6.18E-07 2.854 1.26E-04 2.714 6.83E-08 2.786 4.84E-05 2.700

512 7.95E-08 2.967 1.63E-05 2.940 8.90E-09 2.943 6.31E-06 2.945

1024 9.97E-09 2.991 2.06E-06 2.999 1.12E-09 2.990 7.97E-07 2.993

38



and similar behavior as of the cylindrical and spherical grid cases. When com-

pared with Table 1 in [2], present results indicate a superior performance in

terms of accuracy and order of convergence. Modified piecewise parabolic method

(PPM5) approaches the fifth order of convergence for test A. However, its order

drops down to ∼ 2.4 for test B [2].

Fig. 4.2 illustrates the spatial variation of the conserved variableQ on a non−uniform

grid (N = 16) during test A. It can be clearly interpreted from the plot that the

numerical results approach towards the exact solution with an increase in Ratio

(defined in Eq. (4.4)), i.e., biasing towards the origin. It can be well analyzed

from Table 4.2 that a considerable reduction in errors is observed along with

a rapid increase of EOC to desired fifth order when the grid spacing is biased

towards the origin.

4.1.2 Advection equation in spherical−meridional coor-

dinates

The governing 1D scalar advection equation in spherical−meridional coordinates

is given in Eq. (4.9).

∂Q

∂t
+

1

sinθ

∂

∂θ
(sinθQv) = 0 (4.9)

where the velocity v varies linearly with the θ coordinate i.e. v = αθ and α = 1.

Eq. (4.9) admits an exact solution given in Eq. (4.10).

Qref (ξ, t) = e−αt
sin
(
e−αtθ

)
sinθ

Q
(
e−αtθ, 0

)
(4.10)

A 1D computational grid spanning the interval θ ∈ [0, π/2] is divided into N
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Table 4.2: L1 norm errors and experimental order of convergence (EOC) for

the radial advection problem (test A: {a = 10, b = 0}) with different values

of Ratio (degree of non−uniformity) in cylindrical−radial and spherical−radial

coordinates

Ratio = 1 Ratio = 2 Ratio = 4 Ratio = 8

N ε1(Q) OL1 ε1(Q) OL1 ε1(Q) OL1 ε1(Q) OL1

Cylindrical

16 5.54E-04 − 1.85E-04 − 1.70E-04 − 1.80E-04 −

32 9.22E-05 2.587 3.44E-05 2.429 2.78E-05 2.607 3.03E-05 2.573

64 1.14E-05 3.016 1.81E-06 4.247 1.26E-06 4.468 1.39E-06 4.440

128 4.91E-07 4.537 7.89E-08 4.519 5.47E-08 4.523 5.96E-08 4.548

Spherical

16 5.32E-05 − 2.40E-05 − 2.19E-05 − 2.47E-05 −

32 1.19E-05 2.167 4.48E-06 2.420 3.81E-06 2.523 4.20E-06 2.557

64 1.28E-06 3.208 2.33E-07 4.267 1.72E-07 4.475 1.92E-07 4.449

128 5.28E-08 4.602 9.64E-09 4.594 6.90E-09 4.635 7.57E-09 4.669
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zones. Initial condition (t = 0) for the problem is given in Eq. (4.11).

Q(θ, 0) =


[

1+cos(a(θ−b))
2

]2

|θ − b| < π
a

0 otherwise

(4.11)

where a and b are constants. Two different tests are performed namely, test

A with {a = 10, b = 0} yielding a monotonically decreasing profile and a more

stringent test B {a = 16, b = π/a} resulting in a non−monotonic profile having a

maxima at θ = π/a. The computational domain extends from θ = 0 to θ = π/2,

where the boundary conditions include symmetry at the origin (θ = 0) and

zero−derivative at θ = π/2. Computations are performed till t = 1 with CFL

number of 0.9 and the interface flux is computed using Eq. (4.8).

Fig. 4.3 shows the variation of conserved variable Q with angle θ for both the

tests. For test A, even N = 16 give accurate results, while for test B, N ≥ 32

provide a good approximation of the exact solution. Table 4.3 illustrates the

achievement of the desired fifth order of convergence for both the test cases.

When the results obtained by the present scheme are compared with the pre-

viously proposed schemes (Table 2 of [2]), it can be realized that WENO−C

shows superior performance. For the non−uniform mesh case, a fifth order of

convergence is still preserved with a rapid achievement, as summarized in Table

4.4. Moreover, Fig. 4.4 shows that mesh biasing leads to a significant reduction

in the errors when compared with a uniform mesh of the same number of cells.

4.2 Euler equations based tests

The present reconstruction scheme is now tested for more challenging test cases

involving nonlinear systems of equations, i.e., Euler equations. Although primi-

41



Table 4.3: L1 norm errors and experimental order of convergence (EOC) for

scalar advection test in spherical−meridional coordinates coordinates at t = 1

for test A {a = 10, b = 0} and test B {a = 16, b = π/a} respectively.

Test A Test B

N ε1(Q) OL1 ε1(Q) OL1

32 1.71E-04 − 1.57E-03 −

64 1.99E-05 3.103 2.11E-04 2.894

128 7.10E-07 4.808 1.62E-05 3.699

256 2.25E-08 4.978 4.81E-07 5.078

Table 4.4: L1 norm errors and experimental order of convergence (EOC) for

the scalar advection problem (test A: {a = 10, b = 0}) in spherical−meridional

coordinates with different values of Ratio (degree of non−uniformity)

Ratio = 1 Ratio = 2 Ratio = 4 Ratio = 8

N ε1(Q) OL1 ε1(Q) OL1 ε1(Q) OL1 ε1(Q) OL1

16 7.43E-04 − 4.27E-04 − 4.61E-04 − 5.05E-04 −

32 1.71E-04 2.120 9.18E-05 2.217 1.01E-04 2.195 1.16E-04 2.128

64 1.99E-05 3.103 8.33E-06 3.463 9.13E-06 3.465 1.07E-05 3.438

128 7.10E-07 4.808 2.45E-07 5.085 2.72E-07 5.069 3.24E-07 5.040

tive variable reconstruction is preferred in the past due to the well−behaved re-

sults, in the case of curvilinear coordinates, the involvement of the higher order

derivatives in the extraction of the primitive variables causes spurious oscilla-

tions [2]. Therefore, we restrict our work to the reconstruction of the conserved

variables instead of computationally expensive and intricate primitive variable

reconstruction. Maximum characterstic speed is employed to evaluate the time

step from Eq. (4.1). Several tests are performed in cylindrical and spherical

coordinates to investigate the essentially non−oscillatory property of WENO−C
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for discontinuous flows and the convex combination property for smooth flows.

4.2.1 Isothermal radial wind problem

The isothermal 1D radial wind problem is performed to analyze the devia-

tions of spatial reconstruction schemes near the origin in curvilinear coordinates

[2]. The general form of Euler equation in 1D Cartesian / cylindrical−radial /

spherical−radial coordinates can be written in the form of Eq. (4.12).

∂

∂t


ρ

ρv

E

+
1

ξm
∂

∂ξ


ρvξm

(ρv2 + p)ξm

(E + p)vξm

 =


0

mp/ξ

0

 (4.12)

where ρ is the mass density, v is the radial velocity, p is the pressure, E is the

total energy, and m = 0, 1, and 2 for Cartesian, cylindrical−radial (ξ = R), and

spherical−radial (ξ = r) coordinates respectively. For an isothermal flow, the

energy equation is discarded whereas Eq. (4.13) serves as the adiabatic equation

of state (EOS).

E =
p

γ − 1
+

1

2
ρv2 (4.13)

where γ = 5/3 is assumed for this case. At ξ = 0, axisymmetric boundary

conditions apply, while at the outer edge, density, pressure, and scaled velocity

(v/ξ̄) have zero gradients. The initial conditions are provided in Eq. (4.14)

and the interface flux is evaluated with Lax-Friedrichs scheme with local speed

estimate [37].

ρ(ξ, 0) = 1; v(ξ, 0) = 100ξ; p(ξ, 0) = 1/γ (4.14)

43



The computational domain spanning 0 ≤ ξ ≤ 2 is divided into N = 100 points.

The spatial profiles of density (ρ; left) and scaled velocity (v/ξ̄; right) are plotted

in Fig. 4.5 after one integration step ∆t = 7 × 10−5 for the case of cylindrical

and spherical grid. Here, ξ̄ represents the location of the centroid as discussed in

section 2.4. By comparing it with the previously published results [2, 1], it can

be noted that the density and the scaled velocity remain linear and no signs of

deviations are observed near the origin.

4.2.2 Acoustic wave propagation

A smooth problem involving a nonlinear system of 1D gas dynamical equations is

solved to test fifth order accuracy. The original problem, introduced by Johnsen

and Colonius [3], is adapted to cylindrical and spherical coordinates [4]. The

governing equations and the initial conditions for this test are provided in Eqs.

(4.12, 4.13) and (4.15) respectively.

ρ(r, 0) = 1 + εf(r), u(r, 0) = 0, p(r, 0) = 1/γ + εf(r) (4.15)

with the perturbation,

f(r) =


sin4(5πr)

r
if 0.4 ≤ r ≤ 0.6

0 otherwise

(4.16)

where γ = 1.4. A sufficiently small ε (ε = 10−4) yields a smooth solution. The

interface flux is evaluated using Lax−Friedrichs scheme with local speed estimate

[37] with a CFL number of 0.3.

The initial perturbation splits into two acoustic waves traveling in opposite di-

rections. The final time (t = 0.3) is set such that the waves remain in the

domain and the problem is free from the boundary effects. The computa-

tional domain of unity length is uniformly divided into N different zones i.e.
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Table 4.5: L1 norm errors and experimental order of convergence (EOC) for

acoustic wave propagation test in cylindrical−radial and spherical−radial coor-

dinates coordinates at t = 0.3.

Cylindrical Spherical

N ε1(Q) OL1 ε1(Q) OL1

16 1.01E-05 − 7.98E-06 −

32 4.91E-06 1.036 3.90E-06 1.033

64 6.74E-07 2.865 5.40E-07 2.852

128 3.24E-08 4.380 2.59E-08 4.383

256 1.27E-09 4.670 1.01E-09 4.675

N = 16, 32, 64, 128, 256. Although an exact solution known up to O(ε2) is

known, the solution on the finest mesh N = 1024 is taken as the reference.

Error in density is evaluated from Eq. (4.2). Fig. 4.6 illustrate the spatial

variation of density at t = 0.3 inside the domain in cylindrical−radial (left) and

spherical−radial (right) coordinates. The location of the peaks is same. How-

ever, the height of the peaks differs due to different one−dimensional Jacobians

for both the coordinates. From Table 4.5, it clear that the scheme approaches

the desired fifth order of convergence (EOC) for both the cases.

4.2.3 Sedov explosion test

Sedov explosion test is performed to investigate code’s ability to deal with strong

shocks and non−planar symmetry [5]. The problem involves a self−similar evo-

lution of a cylindrical/spherical blastwave from a localized initial pressure per-

turbation (delta−function) in an otherwise homogeneous medium. Governing

equations for this problem are the same as given in Eq. (4.12) earlier. For the

code initialization, dimensionless energy ε (ε = 1) is deposited into a small region
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of radius δr, which is three times the cell size at the center. Inside this region,

the dimensionless pressure P
′
0 is given by Eq. (4.17).

P
′

0 =
3(γ − 1)ε

(m+ 2)πδr(m+1)
(4.17)

where γ = 1.4 and m = 1, 2 for cylindrical, spherical geometries respectively. Re-

flecting boundary condition is employed at the center (r = 0), whereas boundary

condition at r = 1 is not required for this problem. The initial velocity and

density inside the domain are 0 and 1 respectively and the initial pressure ev-

erywhere except the kernel is 10−5. Due to reflecting boundary condition at the

center, the high pressure region (kernel) consists of 6 cells, i.e., 3 ghost cells and 3

interior cells. As the source term is very stiff, the CFL number set to be 0.1. The

final time is t = 0.05. In a self−similar blastwave that develops, the analytical

results are available in the literature [5, 38].

Fig. 4.7 shows the variations in density, velocity, and pressure with radius on

a uniform grid (N = 100, 200) in 1D cylindrical−radial and spherical−radial

coordinates along with their analytical values [38]. The peak values of pressure,

velocity, and density show similar behavior as given in [4], but the locations of

the shocks are different due to different ε and final time values.

4.2.4 Sod test

Sod test [6] is considered in 1D cylindrical−radial, spherical−radial, and 2D

cylindrical (r − θ) coordinates. For 1D radial cases, governing equation is given

in Eq. (4.12), while governing equation for cylindrical (r−θ) coordinates is given
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in Eq. (4.18).

∂

∂t


ρ

ρvr

ρvθ

ρe


+

1

r

∂

∂r


ρvrr

(ρv2
r + p)r

ρvrvθr

(ρe+ p)vrr


+

1

r

∂

∂θ


ρvθ

ρvrvθ

ρv2
θ + p

(ρe+ p)vθ


=


0

(p+ ρv2
θ)/r

−ρvrvθ/r

0


(4.18)

where terms (ρv2
θ)/r and (ρvrvθ)/r are related to the centrifugal and Coriolis

forces respectively. In this problem, the interface flux is evaluated with HLL

Riemann solver [39]. The initial condition consists of two regions (left and right

states) inside the domain separated by a diaphragm at r = 0.5 as provided in

Eq. (4.19).


ρ

vr

vθ

p


L

=


1

0

0

1


;


ρ

vr

vθ

p


R

=


0.125

0

0

0.1


(4.19)

The computational domain (0 ≤ r ≤ 1) for 1D tests is uniformly divided in N

zones (N = 100, 500), while for the 2D test, the computational domain (0 ≤ r ≤

1, 0 ≤ θ ≤ π/2) is uniformly divided into 100 × 100 zones in the corresponding

directions. The boundary conditions for 1D cases are not required, however,

for 2D case, symmetry of conserved variables at r = 0 (except radial velocity

which is antisymmetric) is considered along with outflow boundary condition

applied to all other boundaries (r = 1, θ = 0, and θ = π/2). The computation

is performed till t = 0.2 with a CFL number of 0.3. For first order and second

order (MUSCL [7]) spatial reconstruction, Euler time marching and Maccormack

(predictor−corrector) schemes [40] are respectively employed.

Fig. 4.8 shows the spatial profiles of density, velocity, and pressure for Sod test
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case in 1D/2D cylindrical coordinates (left) and 1D spherical−radial (right) coor-

dinates. WENO−C performs better than first order and second order (MUSCL

[7]) reconstruction techniques. The 2D test results exactly overlap with the 1D

test results in cylindrical coordinates. Fig. 4.9 shows the spatial variation of

the density in the 2D Cartesian plane at time t = 0.2. When compared with

the results obtained from fifth order finite difference WENO [4], it is clear that

WENO−C yields similar but less oscillatory results.

4.2.5 Modified 2D Riemann problem in cylindrical (R−z)

coordinates

The final test for the present scheme involves a modified 2D Riemann problem

in cylindrical (R − z) coordinates, as illustrated in Fig. 4.10. The problem

corresponds to configuration 12 of [41] involving two contact discontinuity and

two shocks as the initial condition, resulting in the formation of a self−similar

structure propagating towards the low density−low pressure region (region 3).

To make the problem symmetric about the origin, the original problem [41] is

rotated by an angle of 45 degrees in the clockwise direction. The governing

equations are provided in Eq. (4.20).

∂

∂t


ρ

ρvR

ρvz

ρe


+

1

R

∂

∂R


ρvRR

(ρv2
R + p)R

ρvRvzR

(ρe+ p)vRR


+

∂

∂z


ρvz

ρvRvz

ρv2
z + p

(ρe+ p)vz


=


0

p/R

0

0


(4.20)

The computations are performed until t = 0.2 with a CFL number of 0.5 on a

domain (r, z)=[0,1]×[0,1] divided into 500×500 zones. The boundary conditions

include symmetry at the center (except for the antisymmetric radial velocity)
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and outflow elsewhere. For the first order and second order (MUSCL [7]) spa-

tial reconstructions, Euler time marching and Maccormack (predictor−corrector)

schemes [40], are respectively employed. Rich small−scale structures in the

contact−contact region (region 1) can be observed from Fig. 4.11 for WENO−C

reconstruction, when compared with first and second order MUSCL reconstruc-

tion. Structures are highly smeared for the case of first order reconstruction.
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Figure 4.1: Spatial profiles at t = 1 for the radial advection problem in

cylindrical−radial (top) and spherical−radial (bottom) coordinates. Left and

right figures correspond to test A {a = 10, b = 0} and test B {a = 16, b = 1/2}

respectively.
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Figure 4.3: Spatial profiles at t = 1 for the scalar advection problem in

spherical−meridional coordinates with different mesh points. Left and right sub-

figures refer to test A {a = 10, b = 0} and B {a = 15, b = π/a} respectively.
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Figure 4.7: Variation of density (first row), velocity (second row), and pres-

sure (third row) with the radius for cylindrical−radial (left column) and

spherical−radial (right column) coordinates for the Sedov explosion test [5, 4].

Domain is restricted to R = 0.4 for the sake of clarity.
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Figure 4.9: Variation of density with the radius at t = 0.2 for cylindrical (r− θ)

coordinates in the Cartesian plane for the modified Sod test [6, 4].
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Chapter 5

Conclusion

The fifth order finite volume WENO−C reconstruction scheme provides a more

general framework in orthogonally−curvilinear coordinates to achieve high order

spatial accuracy with minimal computational cost. Analytical values of linear

weights, optimal weights, weights for mid−point interpolation, and flux/source

term integration are derived for the standard grids. The proposed reconstruc-

tion scheme can be applied to both regularly− and irregularly−spaced grids.

A grid independent smoothness indicator is derived from the basic definition.

For uniform grids, the analytical values in Cartesian, cylindrical−radial, and

spherical−radial coordinates for R → ∞ conform to WENO-JS. A simple and

computationally efficient extension to multi−dimensions is employed. 1D Scalar

advection tests are performed in curvilinear coordinates on regularly−spaced

and irregularly−spaced grids followed by several smooth and discontinuous flow

test cases in 1D spherical coordinates and 1D/2D cylindrical coordinates, which

testify for the fifth order accuracy and ENO property of the scheme. For a

multi−dimensional test case, only the interface values are considered to integrate

the source term, while for 1D test cases, mid−point values are also used. As a

final note, it is emphasized that the present scheme can be extended to arbitrary

order of accuracy and different techniques of reconstruction in multi−dimensions.
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Appendix A

WENO-C reconstruction weights

A.1 Cartesian coordinates

Weights for a uniform grid in Cartesian coordinates are provided for the sake

of completeness of the present scheme and ease in understanding of the reader.

Also, cylindrical (z,θ) and spherical (φ) coordinates discussed in the later sections

require same weights as of Cartesian coordinates.

A.1.1 Linear weights

In case of Cartesian coordinates (x, y, z), the linear weights are obtained by

putting m = 0 in Eq. (2.26) and then inverting the β−matrix in Eq. (2.24).

• Positive (right) weights:

S3+
0 (i− 2, i− 1, i) :: (w3+

i,0,−2, w
3+
i,0,−1, w

3+
i,0,0) =

(
1
3
,−7

6
, 11

6

)
S3+

1 (i− 1, i, i+ 1) :: (w3+
i,1,−1, w

3+
i,1,0, w

3+
i,1,+1) =

(
− 1

6
, 5

6
, 1

3

)
S3+

2 (i, i+ 1, i+ 2) :: (w3+
i,2,0, w

3+
i,2,+1, w

3+
i,2,+2) =

(
1
3
, 5

6
,−1

6

)
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• Middle (mid−value) weights:

S3M
0 (i− 2, i− 1, i) :: (w3M

i,0,−2, w
3M
i,0,−1, w

3M
i,0,0) =

(
− 1

24
, 1

12
, 23

24

)
S3M

1 (i− 1, i, i+ 1) :: (w3M
i,1,−1, w

3M
i,1,0, w

3M
i,1,+1) =

(
− 1

24
, 13

12
,− 1

24

)
S3M

2 (i, i+ 1, i+ 2) :: (w3M
i,2,0, w

3M
i,2,+1, w

3M
i,2,+2) =

(
23
24
, 1

12
,− 1

24

)
• Negative (left) weights:

S3−
0 (i− 2, i− 1, i) :: (w3−

i,0,−2, w
3−
i,0,−1, w

3−
i,0,0) =

(
− 1

6
, 5

6
, 1

3

)
S3−

1 (i− 1, i, i+ 1) :: (w3−
i,1,−1, w

3−
i,1,0, w

3−
i,1,+1) =

(
1
3
, 5

6
,−1

6

)
S3−

2 (i, i+ 1, i+ 2) :: (w3−
i,2,0, w

3−
i,2,+1, w

3−
i,2,+2) =

(
11
6
,−7

6
, 1

3

)

A.1.2 Fifth order interpolation weights

• Positive (right) weights:

S5+
0 :: (w5+

i,0,−2, w
5+
i,0,−1, w

5+
i,0,0, w

5+
i,0,+1, w

5+
i,0,+2) =

(
1
30
,−13

60
, 47

60
, 9

20
,− 1

20

)
• Middle (mid−value) weights:

S5M
0 :: (w5M

i,0,−2, w
5M
i,0,−1, w

5M
i,0,0, w

5M
i,0,+1, w

5M
i,0,+2) =

(
3

640
,− 29

480
, 1067

960
,− 29

480
, 3

640

)
• Negative (left) weights:

S5−
0 :: (w5−

i,0,−2, w
5−
i,0,−1, w

5−
i,0,0, w

5−
i,0,+1, w

5−
i,0,+2) =

(
− 1

20
, 9

20
, 47

60
,−13

60
, 1

30

)

A.1.3 Optimal weights

The linear weights in Cartesian coordinates in (x, y, z) coordinates are constants,

thus, the optimal weights are also constants. Moreover, positive and negative

weights are mirror−symmetric for this case.

• Positive (right) weights:: (C+
i,0, C

+
i,1, C

+
i,2) =

(
1
10
, 3

5
, 3

10

)
• Middle (mid−value) weights:: (CM

i,0, C
M
i,1, C

M
i,2) =

(
− 9

80
, 49

40
,− 9

80

)
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• Negative (left) weights:: (C−i,0, C
−
i,1, C

−
i,2) =

(
3
10
, 3

5
, 1

10

)

A.1.4 Weights for interface value integration

Weights for the interface value integration to yield line−/face−averaged flux with

different integration points are provided as follows:

• Fifth order quadrature (all middle values)::

(wMi,−2, w
M
i,−1, w

M
i,0, w

M
i,+1, w

M
i,+2) =

(
− 17

5760
, 77

1440
, 863

960
, 77

1440
,− 17

5760

)
• Sixth order quadrature (all interface values)::

(w+
i,−5/2, w

+
i,−3/2, w

+
i,−1/2, w

−
i,+1/2, w

−
i,+3/2, w

−
i,+5/2) =

(
11

1440
,− 31

480
, 401

720
, 401

720
,− 31

480
, 11

1440

)

A.1.5 Weights for source term integration

Since one−dimensional Jacobian is unity for Cartesian coordinates, weights for

flux and source term integrations are the same. For 1D case, 3 point based Simp-

son quadrature can also be used to attain fifth order accuracy. Few quadratures

are given below:

• 3 point Simpson quadrature (2 interface, 1 middle values)::

(w+
i,−1/2, w

M
i,0, w

−
i,+1/2) =

(
1
6
, 2

3
, 1

6

)
• Fifth order quadrature (all middle values):: Refer to Appendix A.1.4

• Sixth order quadrature (all interface values):: Refer to Appendix A.1.4
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A.2 Cylindrical coordinates

The weights for WENO−C reconstruction and integration in cylindrical (θ, z) co-

ordinates are the same as of Cartesian coordinates because the one−dimensional

Jacobians are unity. However, the weights in the radial direction are different as

the one−dimensional Jacobian is ξ. Their values are given in this section.

A.2.1 Linear weights

The linear weights for the radial coordinate R are independent of the grid spacing

and depend only on the index number i (i = Ri+ 1
2
/∆R), as given below. In the

vanishing curvature (R → ∞ and therefore i → ∞), the linear weights of the

conventional WENO reconstruction in Cartesian coordinates can be recovered.

• Positive (right) weights:

S3+
0 (i− 2, i− 1, i) :: (w3+

i,0,−2, w
3+
i,0,−1, w

3+
i,0,0) =(

(−5+2i)(4−9i+4i2)
12(−3+2i)(1−3i+i2)

, −23+45i−14i2

12(1−3i+i2)
, (−1+2i)(85−90i+22i2)

12(−3+2i)(1−3i+i2)

)
S3+

1 (i− 1, i, i+ 1) :: (w3+
i,1,−1, w

3+
i,1,0, w

3+
i,1,+1) =(

− (−3+2i)(−1+2i2)
12(−1+2i)(−1−i+i2)

, 11+9i−10i2

12(1+i−i2)
,− −4+i+14i2−8i3

12(1−i−3i2+2i3)

)
S3+

2 (i, i+ 1, i+ 2) :: (w3+
i,2,0, w

3+
i,2,+1, w

3+
i,2,+2) =(

(−1+2i)(4+9i+4i2)
12(1+2i)(−1+i+i2)

, −11+9i+10i2

12(−1+i+i2)
,− (3+2i)(−1+2i2)

12(1+2i)(−1+i+i2)

)
• Middle (mid−value) weights:

S3M
0 (i− 2, i− 1, i) :: (w3M

i,0,−2, w
3M
i,0,−1, w

3M
i,0,0) =(

5+3i−7i2+2i3

72−264i+216i2−48i3
, −4−i+i2

12(1−3i+i2)
, (−1+2i)(91−95i+23i2)

24(−3+2i)(1−3i+i2)

)
S3M

1 (i− 1, i, i+ 1) :: (w3M
i,1,−1, w

3M
i,1,0, w

3M
i,1,+1) =(

3−2i
−24+48i

, 13
12
, 1+2i

24−48i

)
S3M

2 (i, i+ 1, i+ 2) :: (w3M
i,2,0, w

3M
i,2,+1, w

3M
i,2,+2) =(

(−1+2i)(19+49i+23i2)
24(1+2i)(−1+i+i2)

, −4−i+i2
12(−1+i+i2)

,− (3+2i)(−1−i+i2)
24(1+2i)(−1+i+i2)

)
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• Negative (left) weights:

S3−
0 (i− 2, i− 1, i) :: (w3−

i,0,−2, w
3−
i,0,−1, w

3−
i,0,0) =(

− (−5+2i)(1−4i+2i2)
12(−3+2i)(1−3i+i2)

, 8−29i+10i2

12(1−3i+i2)
, (−1+2i)(17−17i+4i2)

12(−3+2i)(1−3i+i2)

)
S3−

1 (i− 1, i, i+ 1) :: (w3−
i,1,−1, w

3−
i,1,0, w

3−
i,1,+1) =(

(−3+2i)(−1+i+4i2)
12(−1+2i)(−1−i+i2)

, 10+11i−10i2

12(1+i−i2)
, −1+2i+6i2−4i3

12(1−i−3i2+2i3)

)
S3−

2 (i, i+ 1, i+ 2) :: (w3−
i,2,0, w

3−
i,2,+1, w

3−
i,2,+2) =(

(−1+2i)(17+46i+22i2)
12(1+2i)(−1+i+i2)

, 8−17i−14i2

12(−1+i+i2)
, (3+2i)(−1+i+4i2)

12(1+2i)(−1+i+i2)

)

A.2.2 Fifth order interpolation weights

• Positive (right) weights:

S5+
0 :: (w5+

i,0,−2, w
5+
i,0,−1, w

5+
i,0,0, w

5+
i,0,+1, w

5+
i,0,+2) =

(
(−5+2i)(4−10i2+3i4)

30(−1+2i)(12+16i−13i2−6i3+3i4)
,

− (−3+2i)(164+45i−380i2−75i3+78i4)
120(−1+2i)(12+16i−13i2−6i3+3i4)

, 1276+1395i−1300i2−525i3+282i4

120(12+16i−13i2−6i3+3i4)
, (1+2i)(−228+465i−60i2−175i3+54i4)

40(−1+2i)(12+16i−13i2−6i3+3i4)
,

− (3+2i)(−12+15i+20i2−25i3+6i4)
40(−1+2i)(12+16i−13i2−6i3+3i4)

)
• Middle (mid−value) weights:

S5M
0 :: (w5M

i,0,−2, w
5M
i,0,−1, w

5M
i,0,0, w

5M
i,0,+1, w

5M
i,0,+2) =(

3(−5+2i)
640(−1+2i)

,− 29(−3+2i)
480(−1+2i)

, 1067
960

, 29+58i
480−960i

, 3(3+2i)
640(−1+2i)

)
• Negative (left) weights:

S5−
0 :: (w5−

i,0,−2, w
5−
i,0,−1, w

5−
i,0,0, w

5−
i,0,+1, w

5−
i,0,+2) =

(
− (−5+2i)(4−4i−19i2+i3+6i4)

40(−1+2i)(12+16i−13i2−6i3+3i4)
,

(−3+2i)(56−36i−261i2−41i3+54i4)
40(−1+2i)(12+16i−13i2−6i3+3i4)

, 1128+1652i−1183i2−603i3+282i4

120(12+16i−13i2−6i3+3i4)
,− (1+2i)(−168+628i−137i2−237i3+78i4)

120(−1+2i)(12+16i−13i2−6i3+3i4)
,

(3+2i)(−3+8i+8i2−12i3+3i4)
30(−1+2i)(12+16i−13i2−6i3+3i4)

)

A.2.3 Optimal weights

The optimal weights in cylindrical−radial R coordinates are given below. It is

observed that the weights are not mirror−symmetric and are independent of the

grid spacing but depend only on the index number i ( i = Ri+ 1
2
/∆R).
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• Positive (right) weights:: (C+
i,0, C

+
i,1, C

+
i,2) =

(
2(−3+2i)(1−3i+i2)(4−10i2+3i4)

5(−1+2i)(4−9i+4i2)(12+16i−13i2−6i3+3i4)
,

3(−1−i+i2)(96−192i−191i2+500i3−83i4−154i5+48i6)
10(−1+2i2)(4−9i+4i2)(12+16i−13i2−6i3+3i4)

, 3(1+2i)(−1+i+i2)(−12+15i+20i2−25i3+6i4)
10(−1+2i)(−1+2i2)(12+16i−13i2−6i3+3i4)

)

• Middle (mid−value) weights:: (CM
i,0, C

M
i,1, C

M
i,2) =

(
− 9(−3+11i−9i2+2i3)

80(−1+2i)(−1−i+i2)
,

22+49i−49i2

40(1+i−i2)
,− 9(1+2i)(−1+i+i2)

80(−1+2i)(−1−i+i2)

)

• Negative (left) weights:: (C−i,0, C
−
i,1, C

−
i,2) =

(
3(−3+2i)(1−3i+i2)(4−4i−19i2+i3+6i4)

10(−1+2i)(1−4i+2i2)(12+16i−13i2−6i3+3i4)
,

3(−1−i+i2)(24−112i−9i2+412i3−133i4−134i5+48i6)
10(1−4i+2i2)(−1+i+4i2)(12+16i−13i2−6i3+3i4)

, 2(1+2i)(−1+i+i2)(−3+8i+8i2−12i3+3i4)
5(−1+2i)(−1+i+4i2)(12+16i−13i2−6i3+3i4)

)

A.2.4 Weights for interface value integration

For 2D cases, one−dimensional Jacobian is the same as of source−term integra-

tion, given in table 2.1. The weights for quadrature in the radial direction are

given below, where Ri is the radius of cell center.

• Fifth order quadrature (all middle values):: (wMi,−2, w
M
i,−1, w

M
i,0, w

M
i,+1, w

M
i,+2) =(

17(2∆R−Ri)
5760Ri

,−77(∆R−Ri)
1440Ri

, 863
960
, 77(∆R+Ri)

1440Ri
,−17(2∆R+Ri)

5760Ri

)
• Sixth order quadrature (all interface values)::

(w+
i,−5/2, w

+
i,−3/2, w

+
i,−1/2, w

−
i,+1/2, w

−
i,+3/2, w

−
i,+5/2) =

(
154− 3∆R

Ri

20160
,− 31

480
+ 43∆R

20160Ri
,

401
720
− 299∆R

3360Ri
, 401

720
+ 299∆R

3360Ri
,− 31

480
− 43∆R

20160Ri
,

154+ 3∆R
Ri

20160

)

From table 2.2, it is clear that for 3D cases, one−dimensional Jacobian is altered

for surface integrals. Therefore, the weights for surface averaging are different.

For (R−z) and (θ−z) coordinates, the one−dimensional Jacobians are unity for

both the sweeps. But for (R−θ) case, the R−directional integration can be per-

formed by the weights given earlier in this section and θ−directional integration

using the same weights as of Cartesian case, given in Appendix A.1.4.
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A.2.5 Weights for source term integration

For source term integration, the one−dimensional Jacobian is the original value

as summarized in table 2.1. But in this case, regularization is performed to get

rid of ‘1/R’ factor. Apart from the radial integration, the weights for θ− and

z−directional integration are the same as of Cartesian weights given in Appendix

A.1.5. Weights for r−directional integration are given below:

• 3 point Simpson quadrature (2 interface, 1 middle values)::

1. Original weights: (w+
i,−1/2, w

M
i,0, w

−
i,+1/2) =

(
1
6
− ∆R

12Ri
, 2

3
, ∆R+2Ri

12Ri

)
2. Regularized weights: (ŵ+

i,−1/2, ŵ
M
i,0, ŵ

−
i,+1/2) =

(
1

6Ri
, 2

3Ri
, 1

6Ri

)
• Fifth order quadrature (all middle values)::

1. Original weights: Refer to Appendix A.2.4

2. Regularized weights: (ŵMi,−2, ŵ
M
i,−1, ŵ

M
i,0, ŵ

M
i,+1, ŵ

M
i,+2) =(

− 17
5760Ri

, 77
1440Ri

, 863
960Ri

, 77
1440Ri

,− 17
5760Ri

)
• Sixth order quadrature (all interface values)::

1. Original weights: Refer to Appendix A.2.4

2. Regularized weights: (ŵ+
i,−5/2, ŵ

+
i,−3/2, ŵ

+
i,−1/2, ŵ

−
i,+1/2, ŵ

−
i,+3/2, ŵ

−
i,+5/2) =

(
11

1440Ri
,− 31

480Ri
, 401

720Ri
, 401

720Ri
,− 31

480Ri
, 11

1440Ri

)

A.3 Spherical coordinates

The weights for WENO−C reconstruction and integration in spherical (φ) coordi-

nates are the same as of Cartesian coordinates because the one−dimensional Ja-

cobian is unity. However, the weights in spherical−radial and spherical−meridional
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directions are different as the one−dimensional Jacobians are ξ2 and sinξ respec-

tively for the volumetric operations.

A.3.1 Linear weights

The weights for the radial coordinate r are independent of the grid spacing and

depend only on the index number i (i = ri+ 1
2
/∆r) of the grid, as given below.

Again, in the vanishing curvature (R → ∞ and therefore i → ∞), the linear

weights of the conventional WENO reconstruction in Cartesian coordinates can

be recovered. Also, for the case of spherical−meridional coordinate (θ), analytical

solutions are highly complex. Therefore, application of direct numerical inversion

is advised.

• Positive (right) weights:

S3+
0 (i−2, i−1, i) :: (w3+

i,0,−2, w
3+
i,0,−1, w

3+
i,0,0) =

(
(19−15i+3i2)(12−48i+72i2−45i3+10i4)

9(36−198i+471i2−540i3+315i4−90i5+10i6)
,

− (7−9i+3i2)(219−768i+963i2−450i3+70i4)
18(36−198i+471i2−540i3+315i4−90i5+10i6)

, (1−3i+3i2)(1725−3552i+2709i2−900i3+110i4)
18(36−198i+471i2−540i3+315i4−90i5+10i6)

)
S3+

1 (i−1, i, i+1) :: (w3+
i,1,−1, w

3+
i,1,0, w

3+
i,1,+1) =

(
− (7−9i+3i2)(3−9i2+10i4)

18(4−6i−9i2+20i3+15i4−30i5+10i6)
,

(1−3i+3i2)(69+96i−63i2−90i3+50i4)
18(4−6i−9i2+20i3+15i4−30i5+10i6)

, (1+3i+3i2)(12−48i+72i2−45i3+10i4)
9(4−6i−9i2+20i3+15i4−30i5+10i6)

)
S3+

2 (i, i+1, i+2) :: (w3+
i,2,0, w

3+
i,2,+1, w

3+
i,2,+2) =

(
(1−3i+3i2)(12+48i+72i2+45i3+10i4)
9(4+6i−9i2−20i3+15i4+30i5+10i6)

,

(1+3i+3i2)(69−96i−63i2+90i3+50i4)
18(4+6i−9i2−20i3+15i4+30i5+10i6)

,− (7+9i+3i2)(3−9i2+10i4)
18(4+6i−9i2−20i3+15i4+30i5+10i6)

)
• Middle (mid−value) weights:

S3M
0 (i−2, i−1, i) :: (w3M

i,0,−2, w
3M
i,0,−1, w

3M
i,0,0) =

(
− (19−15i+3i2)(−20+58i−21i2−20i3+10i4)

72(36−198i+471i2−540i3+315i4−90i5+10i6)
,

(7−9i+3i2)(−223+590i−222i2−40i3+20i4)
72(36−198i+471i2−540i3+315i4−90i5+10i6)

, (1−3i+3i2)(3773−7672i+5781i2−1900i3+230i4)
72(36−198i+471i2−540i3+315i4−90i5+10i6)

)
S3M

1 (i−1, i, i+1) :: (w3M
i,1,−1, w

3M
i,1,0, w

3M
i,1,+1) =

(
− (7−9i+3i2)(7+4i−21i2−20i3+10i4)

72(4−6i−9i2+20i3+15i4−30i5+10i6)
,

(1−3i+3i2)(317+482i−222i2−520i3+260i4)
72(4−6i−9i2+20i3+15i4−30i5+10i6)

,− (1+3i+3i2)(−20+58i−21i2−20i3+10i4)
72(4−6i−9i2+20i3+15i4−30i5+10i6)

)
S3M

2 (i, i+1, i+2) :: (w3M
i,2,0, w

3M
i,2,+1, w

3M
i,2,+2) =

(
(1−3i+3i2)(212+890i+1461i2+980i3+230i4)

72(4+6i−9i2−20i3+15i4+30i5+10i6)
,
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(1+3i+3i2)(125−106i−222i2−40i3+20i4)
72(4+6i−9i2−20i3+15i4+30i5+10i6)

,− (7+9i+3i2)(7+4i−21i2−20i3+10i4)
72(4+6i−9i2−20i3+15i4+30i5+10i6)

)
• Negative (left) weights:

S3−
0 (i−2, i−1, i) :: (w3−

i,0,−2, w
3−
i,0,−1, w

3−
i,0,0) =

(
− (19−15i+3i2)(4−22i+51i2−40i3+10i4)

18(36−198i+471i2−540i3+315i4−90i5+10i6)
,

(7−9i+3i2)(50−248i+507i2−290i3+50i4)
18(36−198i+471i2−540i3+315i4−90i5+10i6)

, (1−3i+3i2)(187−367i+267i2−85i3+10i4)
9(36−198i+471i2−540i3+315i4−90i5+10i6)

)
S3−

1 (i−1, i, i+1) :: (w3−
i,1,−1, w

3−
i,1,0, w

3−
i,1,+1) =

(
(7−9i+3i2)(1−i−3i2+5i3+10i4)

9(4−6i−9i2+20i3+15i4−30i5+10i6)
,

(1−3i+3i2)(62+100i−33i2−110i3+50i4)
18(4−6i−9i2+20i3+15i4−30i5+10i6)

,− (1+3i+3i2)(4−22i+51i2−40i3+10i4)
18(4−6i−9i2+20i3+15i4−30i5+10i6)

)
S3−

2 (i, i+1, i+2) :: (w3−
i,2,0, w

3−
i,2,+1, w

3−
i,2,+2) =

(
(1−3i+3i2)(92+394i+669i2+460i3+110i4)

18(4+6i−9i2−20i3+15i4+30i5+10i6)
,

− (1+3i+3i2)(34−88i+33i2+170i3+70i4)
18(4+6i−9i2−20i3+15i4+30i5+10i6)

, (7+9i+3i2)(1−i−3i2+5i3+10i4)
9(4+6i−9i2−20i3+15i4+30i5+10i6)

)

A.3.2 Fifth order interpolation weights

• Positive (right) weights:

S5+
0 :: (w5+

i,0,−2, w
5+
i,0,−1, w

5+
i,0,0, w

5+
i,0,+1, w

5+
i,0,+2) =(

(19−15i+3i2)(16−60i2+94i4−45i6+7i8)
90(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

,

− (7−9i+3i2)(508+240i−1740i2−795i3+2417i4+930i5−780i6−175i7+91i8)
180(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

,

(1−3i+3i2)(8132+15120i−5700i2−20325i3+3863i4+8670i5−1800i6−1225i7+329i8)
180(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

,

(1+3i+3i2)(4212−15120i+16560i2+1275i3−11517i4+4350i5+1620i6−1225i7+189i8)
180(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

,

− (7+9i+3i2)(108−240i−120i2+645i3−223i4−510i5+510i6−175i7+21i8)
180(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

)
• Middle (mid−value) weights:

S5M
0 :: (w5M

i,0,−2, w
5M
i,0,−1, w

5M
i,0,0, w

5M
i,0,+1, w

5M
i,0,+2) =(

(19−15i+3i2)(176+128i−660i2−752i3+562i4+468i5−183i6−84i7+21i8)
1920(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

,

− (7−9i+3i2)(9972+10866i−30895i2−48744i3+13939i4+22846i5−4576i6−3248i7+812i8)
5760(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

,

(1−3i+3i2)(314028+637134i−104105i2−911256i3+83561i4+404654i5−65174i6−59752i7+14938i8)
5760(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

,

− (1+3i+3i2)(−29028+70866i+20855i2−75744i3+2689i4+27346i5−4576i6−3248i7+812i8)
5760(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

,

(7+9i+3i2)(−324+378i+1215i2−752i3−1313i4+1218i5−183i6−84i7+21i8)
1920(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

)
• Negative (left) weights:
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S5−
0 :: (w5−

i,0,−2, w
5−
i,0,−1, w

5−
i,0,0, w

5−
i,0,+1, w

5−
i,0,+2) =(

− (19−15i+3i2)(16−16i−60i2+96i3+222i4−51i5−127i6+7i7+21i8)
180(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

,

(7−9i+3i2)(344−164i−1350i2+1184i3+4888i4+1071i5−1663i6−287i7+189i8)
180(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

,

(1−3i+3i2)(7064+15196i−310i2−21376i3+368i4+9431i5−1163i6−1407i7+329i8)
180(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

,

− (1+3i+3i2)(696−3516i+6850i2−1544i3−4388i4+2329i5+543i6−553i7+91i8)
180(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

,

(7+9i+3i2)(12−42i+25i2+132i3−91i4−122i5+151i6−56i7+7i8)
90(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

)

A.3.3 Optimal weights

The analytical values of the optimal weights for spherical−radial r coordinates

are highly intricate but are grid spacing independent and are given below for the

uniform grid, where the index number i = ri+ 1
2
/∆r.

• Positive (right) weights:: (C+
i,0, C

+
i,1, C

+
i,2) =(

(36−198i+471i2−540i3+315i4−90i5+10i6)(16−60i2+94i4−45i6+7i8)
10(12−48i+72i2−45i3+10i4)(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

,

(4−6i−9i2+20i3+15i4−30i5+10i6)(2592−9216i+1908i2+29520i3−27762i4−36204i5+61932i6...
10(3−9i2+10i4)(12−48i+72i2−45i3+10i4)(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

...−6675i7−29126i8+12558i9+3036i10−2695i11+420i12)
10(3−9i2+10i4)(12−48i+72i2−45i3+10i4)(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

,

(4+6i−9i2−20i3+15i4+30i5+10i6)(108−240i−120i2+645i3−223i4−510i5+510i6−175i7+21i8)
10(3−9i2+10i4)(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

)
• Middle (mid−value) weights:: (CM

i,0, C
M
i,1, C

M
i,2) =(

− 3(36−198i+471i2−540i3+315i4−90i5+10i6)(176+128i−660i2−752i3+562i4+468i5−183i6−84i7+21i8)
80(−20+58i−21i2−20i3+10i4)(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

,

(4−6i−9i2+20i3+15i4−30i5+10i6)(−81696+135168i+487832i2−473176i3−1302479i4+832366i5+1162664i6−754472i7

(80(7+4i−21i2−20i3+10i4)(−20+58i−21i2−20i3+10i4)(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10))

−362767i8+292130i9+17034i10−41160i11+6860i12)
(80(7+4i−21i2−20i3+10i4)(−20+58i−21i2−20i3+10i4)(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10))

,

− 3(4+6i−9i2−20i3+15i4+30i5+10i6)(−324+378i+1215i2−752i3−1313i4+1218i5−183i6−84i7+21i8)
80(7+4i−21i2−20i3+10i4)(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

)
• Negative (left) weights:: (C−i,0, C

−
i,1, C

−
i,2) =(

(36−198i+471i2−540i3+315i4−90i5+10i6)(16−16i−60i2+96i3+222i4−51i5−127i6+7i7+21i8)
10(4−22i+51i2−40i3+10i4)(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

,

(4−6i−9i2+20i3+15i4−30i5+10i6)(17856−78336i+24528i2+525848i3−493806i4−1868490i5+2594599i6+3894831i7...
(10(4−22i+51i2−40i3+10i4)(1−i−3i2+5i3+10i4)(69+96i−63i2−90i3+50i4)(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

...−4959771i8−3980631i9+5852829i10+327519i11−2477843i12+642525i13+299640i14−163450i15+21000i16)
(10(4−22i+51i2−40i3+10i4)(1−i−3i2+5i3+10i4)(69+96i−63i2−90i3+50i4)(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

,

(4+6i−9i2−20i3+15i4+30i5+10i6)(12−42i+25i2+132i3−91i4−122i5+151i6−56i7+7i8)
10(1−i−3i2+5i3+10i4)(48−48i−164i2+200i3+390i4−399i5−161i6+210i7−35i9+7i10)

)
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A.3.4 Weights for interface value integration

In 2D case, the original weights for interpolation might be used according to

the situation. In z coordinates, the weights are the same as of Cartesian grids

given in Appendix A.1.4. Weights for θ−directional integration are complex and

advised to be computed numerically. r−directional integration weights are given

below, where ri is the radius of the cell center.

• Fifth order quadrature (all middle values):: (wMi,−2, w
M
i,−1, w

M
i,0, w

M
i,+1, w

M
i,+2) =

(
−69∆r2+1904∆rri−476r2

i

13440(∆r2+12r2
i )

,
321∆r2−4312∆rri+2156r2

i

3360(∆r2+12r2
i )

,
1835∆r2+24164r2

i

2240(∆r2+12r2
i )
,

321∆r2+4312∆rri+2156r2
i

3360(∆r2+12r2
i )

,

− 69∆r2+1904∆rri+476r2
i

13440(∆r2+12r2
i )

)
• Sixth order quadrature (all interface values):: (w+

i,−5/2, w
+
i,−3/2, w

+
i,−1/2, w

−
i,+1/2, w

−
i,+3/2,

w−i,+5/2) =

(
15∆r2−12∆rri+308r2

i

3360(∆r2+12r2
i )

,
−129∆r2+172∆rri−2604r2

i

3360(∆r2+12r2
i )

,
897∆r2−3588∆rri+11228r2

i

1680(∆r2+12r2
i )

,

897∆r2+3588∆rri+11228r2
i

1680(∆r2+12r2
i )

,−129∆r2+172∆rri+2604r2
i

3360(∆r2+12r2
i )

,
15∆r2+12∆rri+308r2

i

3360(∆r2+12r2
i )

)

For 3D cases, one−dimensional Jacobian values are given in table 2.2. For (r−θ)

and (r − φ) planes, the one directional sweeps in r direction can be evaluated

from the weights given in Appendix A.2.4 and θ− or φ−directional integration

weights given in Appendix A.1.4. For (θ−φ) planes, analytical values are complex

as one−dimensional Jacobians are unity and sinξ. Thus, they require direct

numerical procedure.

A.3.5 Weights for source term integration

The one−dimensional Jacobian values for this case are given in table 2.1. The

original and regularized quadrature values in φ direction can be computed from

Appendix A.1.5, θ direction by direct numerical operation, and radial (r) direc-

tion from the weights given below:
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• 3 point Simpson quadrature (2 interface, 1 middle values)::

1. Original weights: (w+
i,−1/2, w

M
i,0, w

−
i,+1/2) =

(
3∆r2−20∆rri+20r2

i

10∆r2+120r2
i

,
2(∆r2+20r2

i )

5(∆r2+12r2
i )
,

3∆r2+20∆rri+20r2
i

10∆r2+120r2
i

)
2. Regularized weights: (ŵ+

i,−1/2, ŵ
M
i,0, ŵ

−
i,+1/2) =

(
− ∆r−2ri

∆r2+12r2
i
, 8ri

∆r2+12r2
i
, ∆r+2ri

∆r2+12r2
i

)
• Fifth order quadrature (all middle values)::

1. Original weights: Refer to Appendix A.3.4

2. Regularized weights: (ŵMi,−2, ŵ
M
i,−1, ŵ

M
i,0, ŵ

M
i,+1, ŵ

M
i,+2) =(

17(2∆r−ri)
480(∆r2+12r2

i )
,− 77(∆r−ri)

120(∆r2+12r2
i )
, 863ri

80(∆r2+12r2
i )
, 77(∆r+ri)

120(∆r2+12r2
i )
,− 17(2∆r+ri)

480(∆r2+12r2
i )

)
• Sixth order quadrature (all interface values)::

1. Original weights: Refer to Appendix A.3.4

2. Regularized weights: (ŵ+
i,−5/2, ŵ

+
i,−3/2, ŵ

+
i,−1/2, ŵ

−
i,+1/2, ŵ

−
i,+3/2, ŵ

−
i,+5/2) =

(
−3∆r+154ri

1680(∆r2+12r2
i )
, 43∆r−1302ri

1680(∆r2+12r2
i )
, −897∆r+5614ri

840(∆r2+12r2
i )
, 897∆r+5614ri

840(∆r2+12r2
i )
,− 43∆r+1302ri

1680(∆r2+12r2
i )
, 3∆r+154ri

1680(∆r2+12r2
i )

)
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