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Highlights

Investigating Steady Unconfined Groundwater Flow using Physics Informed Neural Networks
Mohammad Afzal Shadab,Dingcheng Luo,Eric Hiatt,Yiran Shen,Marc Andre Hesse

e PINNS predict hydraulic conductivity and water table heights using experimental data.
e PINNs eliminate inability of Dupuit-Boussinesq equation when predicting seepage face.

o Inclusion of physics improves PINNs predictions compared to plain neural networks.
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ARTICLE INFO ABSTRACT

Keywords: A deep learning technique called Physics Informed Neural Networks (PINNSs) is adapted to study
Physics-informed neural networks steady groundwater flow in unconfined aquifers. This technique utilizes information from underlying
Unconfined groundwater flow physics represented in the form of partial differential equations (PDEs) alongside data obtained from
Laboratory experiments physical observations. In this work, we consider the Dupuit-Boussinesq equation, which is based on
Boussinesq approximation the Dupuit-Forchheimer approximation, as well as a recent, more complete model derived by Di Nucci
Di Nucci model (2018) as underlying models. We then train PINNs on data obtained from steady-state analytical

solutions and laboratory based experiments.

Using PINNS, we predict phreatic surface profiles given different input flow conditions and recover
estimates for the hydraulic conductivity from the experimental observations. We show that PINNs can
eliminate the inherent inability of the Dupuit-Boussinesq equation to predict flows with seepage faces.
Moreover, the inclusion of physics information from the Di Nucci and Dupuit-Boussinesq models
constrains the solution space and produces better predictions than training on data alone. PINNs based
predictions are robust and show a little effect from added noise in the training data. Furthermore,
we compare the PINNs solutions obtained via the Di Nucci and Dupuit-Boussinesq flow models to
examine the effects of higher order flow terms that are included in the Di Nucci formulation but
are neglected by the Dupuit-Boussinesq approximation. Lastly, we discuss the effectiveness of using
PINNS for examining groundwater flow.

1. Introduction 20 One important problem in using Boussinesq-type equa-
tions is the inability to account for the formation of a
seepage face. A seepage face typically forms at steep lateral
boundaries of the aquifer, where groundwater debouches
into atmospheric pressure (Figure 1). The seepage face,
by definition, is a boundary at which the hydraulic pres-
sure head becomes zero or equivalently, the potentiometric
head becomes the height of the saturated groundwater table.
Analysis of the seepage face is a central component of
many geotechnical, hydrogeological and geomorphological
studies. In hydrology, seepage analysis is of interest for the
design of hydraulic structures such as earth dams or river
embankments (Simpson, Clement and Gallop, 2003; Scud-
eler, Paniconi, Pasetto and Putti, 2017; Hiatt, Shadab, Hesse
and Gulick, 2021). Some models attempt to include seepage
face dynamics by computational means, such as boundary
cell deactivation or simplified extensions of the Boussi-
nesq equation, however these approaches lack the underly-
47 Ing physi f th m (Baird, Mason and Horn, 1998;
Boussinesq equations (Di Nucci, 2018). These equations - D?I\Il)u(}:]c?icszglst' f{jzﬁzn a(n daYoun;; 020?0). Though f?e iv
have been used to degigibe tiQuigy/wave propagation m dels at’tem tt,o capture the ph SiCSbE;I’CCCI’lt mathematical
porous media as a consequence of wave interactions with® O del d lp d bp Di N PRy 2018 for both
structures and tide-induced fluctuations (Di Nucci, 2018). mo 'e eveloped by Di Nucci ( ) accounts for O.t
vertical flow effects and seepage face development while

Large-scale groundwater flow in an unconfined aquifer is :
often modeled using vertically integrated models resultmg
in the Dupuit-Boussinesq (or Boussinesq) equation, which > -
reduce the dimensionality of the problems (Boussinesq, i
1904; Bear, 1972). These approaches exploit the “shallow
nature" of most unconfined aquifers, i.e., their small aspect
ratio, H <« L, where H is the average thickness of the > N
saturated zone and L the horizontal extent of the aquifer. The N
Dupuit-Boussinesq equation, given in Equation (1), is based N
on the Dupuit-Forchheimer approximation and neglects the ©
effect of vertical flow via the shallow water assumption that
results from the order of magnitude analysis of the mass “
balance, i.e., v, /v, = O(H /L), where v, and v, are vertlcal
and horizontal ﬂow velocities respectlvely (Dupult 1863
Forchheimer, 1901; Bear, 1972). The Dupuit- Boussmesq
equation has been extended to include the effect of vertlcal
velocity on overall flow dynamics by a series of extended "

*Corresponding author s2 still neglecting capillary fringe effects. To understand the
B4 mashadab@utexas. edu (M.A. Shadab); mhesse@jsg. utexas. edu ss hydrologic conditions in which either Dupuit-Boussinesq
(M.A. Hesse)

o sa or Di Nucci model is most applicable, it is imperative to

= https://mashadab. github. 10/ (M.A. Shadab); ss compare both models with experimental data. Di Nucci’s
https://www.jsg.utexas.edu/hesse/marc-hesse/ (M.A. Hesse) . ) .

ORCID(s): 0000-0002-0797-5017 (M.A. Shadab); 0000-0002-2532-3274 56 formulation requires a far field, free boundary gradient of
(M.A. Hesse) s7 zero in order to obtain steady state analytic results. Due
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PINNSs for Groundwater Flow

to the scale of laboratory experiments, this is not possibleais
Consequently, a data-based comparison of the two ordinarys
differential equation models is required. 116
In the past, artificial neural networks have been useduz
to predict the behavior of seepage flows (Ma, Huang, Liujis
Morin, Aziz and Meints, 2020; Rehamnia, Benlaouklijie
Jamei, Karbasi and Malik, 2021; Tayfur, 2014; Nourankzo
and Babakhani, 2013). However, artifical neural networks;21
alone, lack the essential physics described by partial difaz:
ferential equation (PDE) models. To incorporate the un-s
derlying physics, information provided by PDE models carza
be integrated into the training of the neural networks. Imas
particular, Dissanayake and Phan-Thien (1994) proposed azs
method of solving PDEs by representing the PDE solutiomaz
as a neural network, and minimizing a loss function defined:s
in terms of the residual of the PDE. This approach wasaze
further developed and popularized more recently by Raissizso
Perdikaris and Karniadakis (2019) to tackle both forwardsa
and inverse problems, referring to it as “Physics Informed:s:
Neural Networks (PINNs)”. In addition to improving theuss
accuracy of predictions, the physics based PINNs method:za
can simultaneously infer PDE model parameters, such asass
hydraulic conductivity. Furthermore, the PINNs methodss
overcomes the inability of Dupuit-Boussinesq equation tawsz
predict the seepage face by supplementing the Dupuitass
Boussinesq equation with additional information through
the training data. The PINNs method has also been success+,
fully implemented in diverse fields such as fluid mechanics
(Brunton, Noack and Koumoutsakos, 2020; Raissi, Yazdani*°
and Karniadakis, 2020; Jin, Cai, Li and Karniadakis, 2021)**
ocean engineering (Jagtap, Mitsotakis and Karniadakis,**
2022), nondestructive testing Shukla, Di Leoni, Black*
shire, Sparkman and Karniadakis (2020); Shukla, Jagtap,**
Blackshire, Sparkman and Karniadakis (2021), cardiology *®
(Sahli Costabal, Yang, Perdikaris, Hurtado and Kuhl, 2020)“°
and optics (Chen, Lu, Karniadakis and Dal Negro, 2020; van'**
Herten, Chiribiri, Breeuwer, Veta and Scannell, 2020). 148
In groundwater applications, PINNs have been em-*
ployed to invert for model parameters and constitutive®
relationships for steady-state cases using synthetically gen-**
erated data (Meng and Karniadakis, 2020; Tartakovsky,**
Marrero, Perdikaris, Tartakovsky and Barajas-Solano, 2020;
He, Barajas-Solano, Tartakovsky and Tartakovsky, 2020;
Bandai and Ghezzehei, 2020; Zhang, Zhu, Wang, Ju, Qian, _,
Ye and Yang, 2022). However, Depina, Jain, Mar Valsson,,
and Gotovac (2021) is the only work that uses PINNs_
technique with data from laboratory scale, porous me-,
dia experiments, and considers unsaturated groundwater,,
flow using Richards’ equation to find van-Genuchten (van,,
Genuchten, 1980) model parameters, soil moisture profiles
from synthetic data, and measurements of a one-dimensional
vertical water infiltration column test. In contrast, we focus
on the two-dimensional problem of steady unconfined flowise
with a seepage face. In this aim, a data-based comparisomeo
of Dupuit-Boussinesq and Di Nucci models is required toie:
understand the effects of higher order, vertical flow terms

162

and the conditions for which each approximation remains
appropriate.

In this work, we apply the PINN s technique to investigate
the dynamics of the water table with a seepage face. First,
we train PINNs using synthetic data, where “ground truths"
are available, to demonstrate its predictive capabilities. We
then apply this technique to experimental data, and go on to
predict free surface profiles and recover the hydraulic con-
ductivity from training data. Next, we compare the two mod-
els of unconfined groundwater flow using PINNs. Finally,
we discuss the effectiveness of using PINNs to examine
steady groundwater flows and predict free surface profiles
and seepage face heights.

The remainder of this paper is summarized as follows:
Sections 2 and 3 revisit the theories underpinning the two
physics-based groundwater flow models and physics in-
formed neural networks. Section 4 focuses on the specific ap-
plication of PINNSs to investigate steady unconfined ground-
water flow. Section 5 discusses the methods involved in
generating synthetic and experimental data. Section 6 and
7 summarize the salient results when applying PINNs and
plain neural network on synthetic and experimental data
respectively. Section 8 discusses the result’s implications
on groundwater flow, and it is followed by conclusions in
section 9.

2. Physics based groundwater flow models

2.1. Boussinesq equation

For unsteady and unconfined flows in a homogeneous
porous media, the Dupuit-Boussinesq equation is the most
widely used to approximate flow. (Boussinesq, 1904). It
is based on the Dupuit-Forchheimer approximation, which
assumes dominant horizontal flow driven by the gradient of
the groundwater table (Dupuit, 1863; Forchheimer, 1901).
By implication, the water column at any horizontal location
is in hydrostatic equilibrium and the gradients are only due
to the lateral variance of pressure in the groundwater table.
In the absence of a source term, i.e., no recharge, and a
level, impervious base, the Dupuit-Boussinesq equation can
be written as

Kh%) =0, te(0,0), x€(,L), (1)
where x is the horizontal spatial coordinate (m), A(x) is the
height of the free surface above the impervious base (m), ¢
(-) is the porosity of the medium (-), and K is the hydraulic
conductivity (m/s). The porous medium is assumed to be
homogeneous and isotropic. At steady-state, Equation (1)
reduces to the following nonlinear boundary value problem

d dh
_= )=
(K h > 0, xe(,L),

which can be solved analytically given appropriate boundary
conditions. For the steady seepage problem shown in Fig-
ure 1 we have the following boundary conditions

h(x = 0,00) = constant, ¢(x = L,00) = —th—h
x

(@)

A3)

x=L
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Figure 1: Schematic of the Di Nucci model showing constant

head H at x = L, transient seepage face height sf(¢) at x = 0,20‘1
transient lake height (1), and transient free surface height
h(x,1). The heights are calculated from the impermeable basg05
at z = 0. The domain extends from x = 0 to x = L, and
the seepage face height is given as sf(t) = h(0,1) — h/(t),,,
The same figure can be used for the Dupuit-Boussinesq model208
by changing two underlying assumptions. First, the Dupuit-
Boussinesq model assumes the seepage face height s £ () to be
zero. Second, the far-field head A(x, L) is not specified. 20

211
Here, the seepage face is located at x = 0, and ¢ = co refers ™
to the variable value at the steady-state, g is the discharge:s
per unit width in the third dimension (m?/s). Note that in the:e
original model, A(0, o) is strictly the steady hydraulic head
level where the aquifer discharges h;(co) but here we also215
consider the seepage face height sf(co) as it is necessary,,,
to accurately predict A(x, oo) experimental values. However,
the seepage face height is typically not known a-priori. Inte-
grating (2) twice and using the boundary conditions yields™*®
the Dupuit-Forchheimer discharge formula (4) (Hantush?*®
1962; Kirkham, 1967; Hesse and Woods, 2010; Bear, 1972)2%°

217

221

h(x, c0) = 1/ h(0, 0)? + % x e [0, L]. (€))
The inherent difficulty of this method lies in the need for: :i
a boundary condition that is at the seepage face, x = O,
whose height is a combination of the known water level ire2+
the reservoir, A;, and the unknown height of the seepage
face (Figure 1). This problem is commonly neglected and,,g
the groundwater table is set equal to the surface water table

where the water debouches.
226

2.2. Di Nucci model =
The model derived by Di Nucci (2018) couples a Dupuit-22s
Boussinesq type equation with Darcy’s law and solves @2e
one-dimensional PDE resulting from the two-dimensionakso
unsteady free surface flow in a homogeneous, isotropic
medium, as shown by the schematic diagram in Figure 1.3,
The vertical flow is included by considering a higher-order,
implicit term in the flux formulation. This term is given in,,
Equation (5), as well as the first-order term associated with
Darcy’s law. A unique solution is possible using a boundaryzss
condition with time dependent flux at the seepage face,
x = 0, given by Equation (7) and a constant hydraulic head,_,
level at the upstream boundary, x = L, given by Equation
(8). Moreover, the seepage face development is accountedss

for by a mass and momentum balance as well as Cauchy’s
integral relation theorem for potential and stream function
relationships (Bear, 1972; Di Nucci, 2018). The resulting
governing equations take the form:

a _ _9 hj_ii(z)hj 5)
K ~ ox|2 Kox\n/ 3|’

1 dq ¢ oh

1 - _ZX=Z= L

X 9 X o t€(0,00), x€(0,L), (6)

subject to boundary conditions:

Z(0.0) = g(0), )

K

h(L,t) = H = constant, )

where ¢g(x,?) is again the discharge per unit width (m?/s).
Moreover, g(¢) is considered a function of time to reproduce
the boundary condition of the 2D problem, which can be
considered as

2~ h3 (o)

2L ©)

H
q
—(0,n =
%00

for a steady-state lake level of h;(c0). The integral relation
arising from Cauchy theorem is

L
—hz(t)——Hz / %q(x,t)dx, (10)
0

where h,(?) is the time varying height of lake which is not
considered in Dupuit-Boussinesq approximation. The tran-
sient seepage face height s f(¢) (in m) can then be calculated
using

sf(®) = h(0,1) = hy(1)

L
= h(0,1) - \/H2 —2/ Loxnde.
o K

For steady-state, Equation (5) and (10) take the form

q d (h*  qdhh
a4 _ - d 12
K dx( +de3> an (12)
g H?—hi()
== (13)
K 2L

Also, g(x,00) = g becomes a constant in both space and

time, stemming from Equation (6). For the boundary condi-
tions,

3—h(L,oo) =0 and Ah(L,0)=H (14)
x

the analytical result for free surface height A(x, o) is

h(x,00) =

\/H2_2q(L—) gq_[l_exp<_3K(L—x)>]_
K 3k q

15)

Shadab et al.:
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Coupling (15) with (13) gives the steady-state seepage facesr
height as 288

Sf(OO) = /’1(0, 00) - h[(OO) 200

3KL 201
g (1o ()

70, 00) + hy(o0) (aor

289

~ 3K2

As such the Di Nucci model determines the unknown steady
height of the groundwater table, 4(0, 00), at the seepage face o,

3. Physics informed neural networks 205

2906

3.1. Deep neural networks for function
approximations

Deep neural networks have been extensively studied for -
the purpose of approximating arbitrary functions (Hormkzg9
Stinchcombe and White, 1989). Dissanayake and Phan—300
Thien (1994) first utilized neural networks to forward solve "
PDEs by assembling the residual form of a given PDE and"
its boundary conditions as soft constraints for training the”
neural network model. We refer to Goodfellow, Bengio and"
Courville (2016) for a full exposition of neural networks and3 °®
its training, and Lu, Meng, Mao and Karniadakis (20214)
for its application to the context of approximating solutlons
to PDEs. Here, we present the formulation for a standard,
feed-forward neural network, such as that described in Lu,
et al. (2021a). A feed-forward neural network defines the
mapping from an input R"r to output space R'out based
on successive, nonlinear transformations through layers of
neurons. We refer to the first layer as the input layer, the -
final layer as the output layer, and additional layers as h1dden N
layers. Activation values are passed from one layer to the e
next via an activation function composed along with a hnear g
transformation. The neural network mapping, u 5 (x), glven "
an input vector, R"n, can be mathematically represented as

207

318
Uy N (x5 0) 1= (Un_ OV N_20...00;)(), a7

319
where o denotes the composition of two functions (i.e,,,

(0p001)(x) = v,y(vy(x)) and v; maps the ith layer to its,,
following layer through

322
323

(18)

324

v;(x) =0;(W;x+ b)) fori=1,2,..,.N

In this representation, transformations between the layers
are parameterized by weights W; € R™*"i-1 and biases2e
b € R, collectively written as 6 = { l,bl}f\i 1 Heres.,,
N is the total number of layers and n; is the width of the
i™ layer. The function o; ;(+) is the activation function for
the i layer, which is typically a nonlinear function apphed3
element-wise to its input vector. The possible choices for
the activation function are numerous and include common
implementations such as the sigmoid, ReLu and softplus
functions (Goodfellow et al., 2016; Lu et al., 2021a). The™®
activation function, for the output layer, can be chosen based
on the desired output of the neural network. Derivatives of |
the neural network output with respect to the inputs, weightszs:
and biases, can be obtained using automatic differentiatiorss:

(Rumelhart, Hinton and Williams, 1986; Baydin, Pearlmut-
ter, Radul and Siskind, 2018).

Given a training dataset S; = {(x;, u,-)}fi’ consisting of
N, inputs x; and outputs u;, the neural network is trained by
minimizing a loss function. This is commonly taken to be
the mean squared error (MSE) between the neural network
outputs and the training data. Thus, we can write

Nt

0* =argm€inNit ;(uw(x,.;e)—u,.)z, (19)
where 0% represents the optimal weights and biases. The
optimization problem within training the neural network is
frequently solved using gradient based optimization algo-
rithms such as stochastic gradient descent (Bottou, 2010),
ADAM (Kingma and Ba, 2014), and limited-memory BFGS
(L-BFGS) (Liu and Nocedal, 1989).

To avoid over-fitting, additional regularization terms
may be included in the loss function such as /; or /, norms
of the weights and biases (Goodfellow et al., 2016). For deep
neural networks with a large number of neurons, a process
known as dropout can also be employed during training as a
form of regularization. This technique omits random weights
and biases during training (Srivastava, Hinton, Krizhevsky,
Sutskever and Salakhutdinov, 2014).

3.2. PINNs for solving forward and inverse
problems

3.2.1. Learning forward solutions

Physics informed neural networks (Raissi et al., 2019)
aim to enforce physics based constraints on the neural net-
work to improve the effectiveness of the technique when
applied to physical systems (Tartakovsky et al., 2020). Sup-
posing a physical system has state u(x, ) which is governed
by a nonlinear PDE of the form

u+N@u;2)=0 (20)

where A is a nonlinear differential operator and A consist
of model parameters defining the PDE. Within the PINNs
framework, the state u(x, t) is approximated by a feedforward
neural network upn n(x,?), as defined in (17). Information
given by the PDE is incorporated into the training of the
neural network by defining the loss function as

L(S,,S,,0) = MSE, + aMSE, (21)

where

=

1
Data misfit, MSE, = Ni (un N 1) — )2,
i=1

(22)

N
. IR
PDE misfit, MSE,; = —— 3" | £y n (xi.1): DI
¢ j=1
(23)

Here, MSE is the mean-squared error loss term and is
referred to as the misfit term in this paper. Moreover,

Shadab et al.: Preprint submitted to Elsevier

Page 4 of 12



333

334

335

374

375

PINNSs for Groundwater Flow

Fu(x,1); 2) 1= u,(x,1) + N (u(x, 1); 2) is the PDE residual s
N, is the number of data points in the training set S, =ses
{(x[,z[,u,»)}fi’l, N, is the number of collocation points ofiss

the form S, = {(x ot j)};vzcl, and «a is the PDE regularization::
parameter. The data misfit term, MSE,, is evaluated on the ;
training data points where the state is known. The PDE misfit__
term, MSE 5 is evaluated via automatic differentiation on_
N, collocation points (x;,t;) € S, where the state is not
necessarily known. The MSE ; adds physics information ta,,
the neural network by encouraging the satisfaction of the,,,
governing PDE on the collocation points. The parameter a,,,
can be chosen to balance the relative effects of data and PDE,,
in training the neural network. Once trained, the optimal,,
weights and biases are determined as 6*

395

0* = arg rr}gin L(S,,S,.0) (24)
and the resulting neural network u 5 is used to predict thez:
state at desired points (x, 7). sos
This PINNs formulation can be used as a solver for
the PDE by supplying initial and boundary conditions as__
training data and then using points on the interior of the
domain as collocation points for evaluation of the PDE misfit
(Raissi et al., 2019). The neural network is then trainedﬂ03
to fit the initial and boundary data while satisfying the
PDE. Alternatively, initial and boundary conditions can
be enforced as hard constraints by directly building them
into the neural network approximation, uy y, through an
auxiliary function (Lagaris, Likas and Fotiadis, 1998; Lu,
Pestourie, Yao, Wang, Verdugo and Johnson, 2021b), or
through the use of constrained optimization algorithms suctf®
as the penalty and augmented Lagrangian methods (Basiwos
and Senocak, 2022).

4

7

410

3.2.2. Learning parameterized forward-solutions y

We also consider a parameterization involving an addi—z:
tional input variable, u. For example, u can parameterizem
a range of source terms over which the neural network isus
to be predictive. In this case, we construct the neural net-
work approximation, up n(x, t, #), with the additional input4 16
variable, . We train the neural network using training data,__
S, = {(x. ty, s u,-)}j\l:'1 corresponding to different values of,,,
input variables. We adopt the same loss function as in (21),,,
with
420

(25)421

422

=z

Data misfit, MSE, = Nl (un N (Xt ;) — 1),
I

N; 423
. 1
PDE misfit, MSE; = A Z Lf G O 1o i), s MIZ, a2
ti=1

(26)425

in which we use the training data points to evaluate both the
data and PDE misfits. Again, we can optimize the weights'®
and biases to obtain our neural network approximation. ~ **
In this approach, the neural network is essentially trained*

on data while using the PDE as a form of regularization. The'*®

resulting neural network predictions represent a fitting of
training data that is also informed by the physics associated
with the PDE and scaled with the weighing parameter a.
Crucially, the PDE used does not need to capture all of
the physics. Instead, we can adopt this approach even when
initial or boundary conditions are not specified because the
PDE is only used as regularization and does not need to be
solved in training.

3.2.3. Inverting for model parameters
When model parameters A are unknown, they can be
inverted for, during training, by defining them as additional
optimization variables along with the weights and biases 6.
The optimization problem then takes the form
(0%, 4%) = arg “;ij‘ L(S,,S,.0,4). (27)
It must be noted that in either case, (24 or 27), the PDE
does not need to be satisfied exactly by the trained neural
network. Instead, the PDE misfit is only minimized to the
extent achievable by the training process. Therefore, the
recovered parameter values have a meaningful physical in-
terpretation only when the PDE is well satisfied by the neural
network. Otherwise, the recovered parameters serve only to
improve predictions made by the neural network. Recent
improvements aim to address this issue. For example, Basir
and Senocak (2022) ensures that the PDE misfit vanishes
in training through the use of the augmented Lagrangian
method.

4. PINNs for examining steady unconfined
groundwater flows

We apply PINNs in the context of steady groundwater
seepage in homogeneous porous media. Physics information
is incorporated into the training of the PINNs through PDE
models of quasi-1D seepage flow. In particular, we consider
both the Dupuit-Boussinesq equation and Di Nucci’s equa-
tion as potential models.

4.1. PDE models
Under steady-state conditions, the Dupuit approximation
given by Equation (2) can be integrated with the flow bound-
ary condition (3) to yield
dh

q+Kh— =0,

€ (0,L),
ix x€(0,L)

(28)
and similarly integrating the Di Nucci’s model ODE with
flow boundary condition takes the form previously derived
in Equation (12) as

dh g d ( L dh

+Kh—+ =
q dx

TR ) =0, xe(0,L). (29)

In both equations, g, the flow rate per unit width, is constant
in space due to the absence of recharge, and parametrizes the
flow profile A(x). For the purpose of training, we normalize
the two equations by this non-zero constant such that the
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source term is of @(1). In this case, the residual of the Dupuit

equation can be re-written as 462
463

K,dn x€(0,L) (30)

fDupuit(h’ ¢:K) =1+ ;ha =0,

and the residual of the Di Nucci equation becomes fos
466

K dh 1d dh

SoiNucei(P> ¢; K) 1= l+—h—4=— <h—> =0,x € (0, [).

g dx 3dx \ dx

(3 1 )469
470

4.2. Learning flow-parametrized solutions to a71
seepage equations 42

Our goal is to be able to predict the phreatic surfacé”
profiles parameterized by the flow rate per unit width ¢q. Td"™*
accomplish this, we seek a neural network approximation,”®
hy N (x, @), which takes the longitudinal position, x, and the™®
flow rate per unit width, g, as input variables. Training data is*"”
given in terms of the free surface height, A;, corresponding td*”®
the inputs (x;, ¢;). Furthermore, we incorporate the physics”®
information provided through either the Dupuit or Di Nucct*®®
equations under the PINN framework. This formulation is***
the steady-state and therefore, the time component can be***
neglected. 83

Instead of directly approximating h(x, q), we construct®*
the neural network approximation by scaling the input and*®®
output variables by their maximal values within the training**®
data, X.» 9max. and hp,,. That is, we define the scaled*®”
inputs and outputs, NG

489

h
3290
L (32f

max

- X ~ q
X = , 4= s
Xmax Imax

h=

- 401
and construct a neural network Ay (X, q) that takes the,
scaled position and flow variables as inputs, and outputs the,,,
scaled free surface height. We can recover the approximation,,
for free surface height by

92

495

hynG.q) =hyy <xx ,L> Pnax- (33 )07

max qmax

498

Scaling of the variables helps to ensure that the input vari#e°
ables X and § are of similar magnitudes, which can helpe°
to accelerate training of the neural network (Priddy ande:
Keller, 2005). Furthermore, scaling the output variable alsc¢°?
simplifies the interpretation of the regularization parameters°3
which will be discussed later. 504

In addition to the flow rate, the hydraulic conductivity K5°s
enters as a model parameter, which is treated as a constan®°®
throughout the domain. Thus, in the steady-state case, we°?
have PDEs of the form 508

509

f(h(x),q:K) =0, xe€Q, (3410

511
using either f = fpypuic OF f = fpinucei- This allows us to, ,
define the training loss as

N,
1 ~ . ~
£(5,.0.K) = — ¥ (hyn(5:.4:0) = )’
I =1

z

1

+ |f(hyn i a)sai KIP - (35)

a
Nz,»

Il
—_

given training data S, = {(x;,q;, hi)}fi’l, with %;, §;, and
h; denoting their scaled values. Note that we evaluate the
PDE misfit using re-dimensionalized variables on the same
locations as the training data, as in Equations (25) and (26),
and the corresponding derivatives of Ay 5 are computed by
a simple change of variable based on Equation (33).

Typically, boundary conditions are also required to solve
for the complete flow profile using the PDEs. However, it is
difficult to determine appropriate boundary conditions for
both the Dupuit-Boussinesq and Di Nucci equations. As
previously discussed, when a seepage face is present, the
piezometric head where water debouches the media differs
from the surface water height at that point. This piezometric
head is unknown a priori. However, the PINNs formulation
does not require imposing a boundary condition. Instead,
the PDE is used as regularization for the flow profile in
the interior of the domain and the data helps to inform the
neural network about the boundary. Therefore, we will not
explicitly employ a boundary misfit term in the loss function.

When accurate estimates for hydraulic conductivity, K,
are not available, we can invert for the value of K during
training based on the training data. To do so, we consider
K as a variable that may be optimized in training, which
is updated based on the loss function (35). Due to the
uncertainties associated with the experimentally measured
K, inverting for K in training can produce a model that better
fits the training data.

4.3. PINNs implementation

This study’s investigations are performed with fully
connected, feed-forward neural networks. Figure 2 shows
the architecture diagrams of the PINNs based on the Di
Nucci model. The default architecture utilized involves 4
hidden network layers that are each 20 neurons wide. The
hyperbolic-tangent activation function is used for all hidden
layers, while a softplus activation function is used for the
output layer to ensure the predicted free surface heights
are non-negative. The output of the neural network hp
is automatically differentiated with respect to x in order to
compute the PDE misfit term.

The loss function (35) is then minimized to predict the
optimal weights and biases 8* (24), and model parameters A*
(hydraulic conductivity K) (27). Since hydraulic conductiv-
ity can vary by orders of magnitudes and cannot be negative,
we invert for the log of hydraulic conductivity K. We employ
a combination of the ADAM and L-BFGS optimization
algorithms to train the neural networks. In all training cases,
we perform 50,000 ADAM iterations followed by L-BFGS
until convergence to a tolerance of € = 10~ on the norm of
the gradient of the loss function.
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Figure 2: Neural network architecture diagrams of PINN for investigating steady-state groundwater flows using Di Nucci model.

4.4. Selection of a regularization parameter for
the PDE misfit term

There exist sophisticated, adaptive regularization schemesz=
such as learning rate annealing, neural tangent kernelsss
and minimax weighting (McClenny and Braga-Neto, 202034
Wang, Teng and Perdikaris, 2021), predominantly used tcsss
improve the forward solution of PDE systems. However, irsss
this work, we choose non-adaptive regularization in ordemss?
to reduce the complexity of the loss term while gettingas
sufficiently accurate predictions. A scaling analysis of theae
competing terms in the loss function aids in selecting theso
PDE misfit regularization parameter «. Considering a triviaks:
neural network A,y = 0, we observe that the data misfiesz
term is

540

541

553

554

4

(h; — hyn (1 g))* ~ O(1)
1

MSEh — N 555

556

1
1

due to the scaling of the output variable. The PDE misfit term
is

NI
1
MSE; = N Y fhyn(xia), 3 K)? ~ O(1)
i=1

due to our choice of normalization for the PDE. With a
choice of @ = O(1), we expect the significance of the data
misfit to be comparable to the PDE misfit. In this paper, we
select the regularization parameter as a fixed hyperparameter
to minimize the testing errors of the neural networks. More-
over, we conduct a comprehensive investigation of testing
errors with different hyperparameters, training data and PDE

models, with @ = 1 as a reference point. 557

5. Data generation

Synthetic data is generated using the analytical solutions
of the two PDEs; (4) for the Dupuit-Boussinesq and (15)

for the Di Nucci models respectively. The analytical results
h(x) at selected values of (x;,q;) are then corrupted by
Gaussian white noise with standard deviation that is 2% of
the maximum A(x) in the dataset. Synthetic data is used
to test the performance of the neural networks as both the
model and its parameters are known.

We also perform our analysis on experimental data of
steady groundwater flow that was obtained using the ex-
perimental design shown in Figure 3. The setup consists of
an acrylic cell of length 167 cm, height 45 cm and width
2.54 cm (in the third dimension) which contains a porous
region filled with 1 or 2 mm diameter beads. Dyed water is
pumped from the right boundary x = L at a specified flow
rate which subsequently drains from the seepage face on the
left boundary x = 0 with zero head at the gravity well, i.e.,
h; = 0. A camera, placed orthogonally in front of the cell,
takes pictures which are then processed using a Matlab code
to digitize and extract the free surface profiles.

@

=l

| BEOOOCO0 [
] | | [ ERERET
Acrylic dell i j

Figure 3: A picture of the experimental setup.
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6. Steady-state results using synthetic data =

6.1. Learning parametrized solutions from
synthetic data

Synthetic data (x;, g;, h;) is generated from 8 linearly,
spaced flow values of g € [107#, 1073] m?/s and 30 equidis—,
tant points of x € [0, 1.65] m with K = 0.002 m/s. These,,,
values are selected to resemble those found in the experi-,,
mental data. PINNs are then trained using the synthetic data,,
along with its corresponding PDE as regularization. The,
PDE misfit is evaluated using the same locations (x;, g;) as,,,
the training data. We highlight that the seepage face heightin,,,
the synthetic data using the conventional Dupuit-Boussinesq,,,
model is zero prior to adding noise, but is non-zero for Di_,
Nucci model. 628

We first examine the effects of the regularization param-,
eter a. PINNs are trained with increasing values of a from,,
@ =0uptoa = 103. Here @ = 0 corresponds to a plain,,,
neural network which does not incorporate any physics infor-,
mation. We consider both fixing the hydraulic conductivity,,
K and simultaneously inverting for K in training. For the,,,
training values of g, we plot the noisy free surface data along,,
with the predictions of the neural networks trained using,,,
each value of a. Examples of the resulting free surface pro-,,,
files are shown in Figures 4 (also see Supplementary Figure,,,
1) and 6 (S.F. 3) for the Dupuit and Di Nucci equations using,
PINNSs with fixed K and in Figures 10 (S.F. 7) and 12 (S.F,,,
9) for the Dupuit and Di Nucci equations using PINNs with,,,
inverted K. All results are available in the supplementary file, ,
with corresponding figure references given in the parenthesis, ,,
pertaining to each case. These profiles are plotted alongside,,,
the training data, as well as the true noise-free profiles from,,
the underlying PDE solutions. ~

In general, we observe extreme overfitting for small,,
values of a due to the lack of regularization, both with,,
and without inversion for K. The overfitting is reduced by,
increasing a, as the PDE is more strongly respected relative,_
to the training data. This happens due to the introduction of,_,
the physics information to the neural network from the PDE, ,
misfit term in objective function. Increasing a increases the,
accuracy of when compared with the underlying noise-free,,
PDE solution. In the case with fixed K, the range of a €,
[1072, 10] lead to similar predictions of the profile. However, _,
for a values beyond this (e.g. @ = 103), the predictions,,
deviate from the data due to the excessive weighting on,
the PDE misfit. This is unhelpful in this case as the PDE,_,
regularization alone does not determine the flow profile due,
to the lack of boundary conditions. Instead, data is needed to,
provide information about the seepage face to constrain the
solution. Similar observations can be made for the profiles,.,
arising from the PINNs with inverted K. This suggests thag,,
it is important to find an optimal regularization parameter « ¢,

This effect is illustrated further in the plots of PDE,,
residuals inside the domain, corresponding to predicted free,q,
surface profiles. These are shown for Dupuit model in Figure,,,
5 (S.F. 2) and Di Nucci model in Figure 7 (S.F. 4) for PINNg,,
with fixed K, and Dupuit model in Figure 11 (S.F. 8) and Di,,

23

60

61

Nucci model in Figure 13 (S.F. S10) for PINNs with inverted
K. From these plots, it is evident that increasing a decreases
the PDE residual. Close to the seepage face (x — 0), the
PDE residual typically increases. This likely a result of both
noise in the data and rapid changes in free surface height near
the seepage face, which are difficult to capture with sparse
data points. The case of no PDE misfit, « = 0, generally
has the highest residual. The residual is less than 1072 at
most points in the domain for @« > 0.1. We note that the
inverted spikes in the residuals are artifacts of the log scale,
and correspond to points where the sign of the PDE residual
changes.

To compare the generalization capabilities of the neural
networks, we plot in Figure 8 the testing errors (MSE,),
averaged across 10 different initializations of neural net-
work weights and biases in training, as a function of the
regularization parameter «. The testing data are generated
from randomly sampled flow values ¢ € [1074,1073] m? /s
that are not in the training set. The left figure corresponds
to the predictions made by PINNs with fixed K while the
right figure corresponds to predictions made by PINNs with
inverted K. Here, we observe that the optimal choice for
the regularization parameter is around @ = 0.1 — 1 where
the testing errors are below 2 X 107>, The testing errors
of the neural networks trained on the Dupuit and Di Nucci
models are close, indicating that the PINNs models perform
similarly for data generated by the two different underlying
models.

In addition to our default setup considered here, we
repeat the analysis for testing error in terms of the regu-
larization parameter, and use different values of noise ratio,
hydraulic conductivity, amounts of training data, and neural
network architectures. The results are provided in supple-
mentary figures 5 and 6 for the testing errors using fixed
and inverted K respectively. The optimal choice of regu-
larization parameter appears to be consistent across these
variations, remaining relatively unchanged near « = 1. The
exceptions to this are the cases with very small noise, where
small values of a can perform well, and very large network
sizes, where a much larger value of a is required to prevent
overfitting. Overall, scaling the data misfit and PDE misfit
terms to the same magnitude allows an intuitive selection
of an optimal & value (namely, « = 1). Moreover, near-
optimal « values, the corresponding optimal testing errors
are similar in size across the majority of the neural network
sizes considered. Thus, the optimal selection of a largely
eliminates the need to tune additional hyperparameters, such
as the width and depth of the neural network.

6.2. Inversion for hydraulic conductivity

From the synthetic data, we also invert for the hydraulic
conductivity, K. This is done by including K as an opti-
mization variable during the training of the neural network.
To avoid biasing the solution, we initialize K to be three
times that of the ground truth. The inversion results are
summarized in Table 1 for the range of @ € [1074,10?],
where we report the means and standard deviations of K
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Mean (m/s) Error (%) Std. Dev. (m/s) eos
Truth 2% 1073 - °9°
700
Dupuit model 701
a=10"* 142x1073 29.22 1.77x 1074 702
a=10"2 199x1073 0.41 1.87 x 1075 703
a=10"" 2.00x 1073 0.53 1.94 x 105 708
a=1 2.02x 1073 1.05 1.90 x 1075 708
a=10 2.03 % 1073 1.65 2.57 % 1075 206

a=10> 205x1073 2.62 3.01 x 1075
a=10° 351x10°? 75.5 2.04 x 1073 o
Di Nucci model 708
a=10"* 1.70x 1073 14.83 107x 104 7
a=10"2 2.00x1073 0.03 2.10x 1073 e
a=10"" 201x10°? 0.48 3.42 %1075 7
a=1 2.03x 1073 1.71 1.60 x 1075 712
a=10 2.05% 1073 2.55 1.91x 1075 713
a=10> 206x1073 3.19 2.02% 1075
a=10° 4.07x10°? 103.38 2.01 x 103 715
716

Table 1

Recovered hydraulic conductivity, K, values from synthetic-m
training data generated from PINNs with Di Nucci equation718
(top) and Dupuit equation (bottom). Inversion results are*®
mean and standard deviations (std. dev.) across 10 different’®

sets of initial neural network parameters during training. 721
722

723

across 10 initial weights and biases in the training of the24
neural networks. <

In general, the inversion yields accurate values of K726
for both the Di Nucci and Dupuit equation based PINNs727
Of the tabulated results, with the exception of a = 104728
the errors of the inverted K values are on the order of2°
1%, and can likely be attributed to noise in the data. Thig°
gives us confidence that for the range of @ € [1072, 10F>
that gives optimal testing error, we can recover accurate’32
estimates of K while simultaneously training to predict the’s3
free surface profiles. Moreover, the PDE misfits are smalF3+
<1x1072 throughout the domain for > 0.1, as shown irrss
Figures 11 (S.F. S8) and 13 (S.F. S10) for the Dupuit and D3¢
Nucci models, respectively. This allows us to meaningfully’s?
interpret the inverted hydraulic conductivity as a parameterss
of the underlying PDE model. 739

740

741

7. Steady-state results using experimental raz
data 7a3

We next train neural networks on the experimental data’**
considering data from 1 mm and 2 mm beads separately’*®
In the 1 mm data set, we have flow profiles for 10 differenf*®
flow rates while for the 2 mm data set we have 12 differenf*”
flow rates. Each flow profile consists of 200 data points™®
For simplicity, the height of the tail water, A, is set to zerd™*®
for all experiments, but this model can be easily applied*®
to non-zero tail water level. For each bead size, we take™?
flow profiles from six of the flow rates as training data;®?
and use the remaining datasets as test sets. We train PINNg®?

using the Di Nucci and Dupuit-Boussinesq equations, using
a = 1 unless otherwise specified, and evaluate the PDE
misfit using the same locations (x;, g;) as the training data.
Theoretical estimates of the hydraulic conductivity are pre-
calculated using Cozeny-Karman relation for permeability
(Bear, 1972). We consider both using the fixed theoretical
estimates of K as well as inverting for K during training
of the PINNs. We also train plain neural networks without
physics informed regularization as a reference.

7.1. Flow data prediction

Examples of predictions by the trained neural networks,
with and without physics informed regularization, are shown
in Figures 14 (also see S.F. 11, 12) and 16 (S.F. 15, 16) for
1 mm and 2 mm beads respectively. The plots show the best
and the worst cases among all the flow rates considered. The
plots for all other cases are provided in the supplementary
file. The mean squared error losses for both data (MSE})
and PDE (MSE r) while training are at least three orders
of magnitudes less than the original scales (equal to unity)
indicating that the NN have converged (see Table 2).

The plain neural networks are able to fit the training data,
but tend to perform poorly in testing due to over-fitting. This
is particularly noticeable for the 2 mm bead data, where the
plain neural network suffers from spurious oscillations (see
14 and 16). This transcends to the PDE and data misfits
in training where the PDE misfit for plain NN is at least
one order of magnitude higher than that from PINNs (see
Table 2). We also observe that the PINNs trained on Dupuit
and Di Nucci models yield similar predictions to each other,
and are almost indistinguishable from each other when both
use the inverted K values. However, the PINNs predictions
using both the Dupuit and Di Nucci models with the fixed
theoretical K values tend to differ from the testing data near
the boundaries. In particular, they over-predict the seepage
face height for | mm beads and significantly underpredict the
seepage face height for the 2 mm bead data. The deviations
suggest that the theoretical estimates of K may be inaccurate.
Instead, PINNs with inverted K values, yield the best results
among all the techniques used. Please note that the stan-
dard Dupuit-Boussinesq model would have estimated a zero
seepage height, but the information obtained from training
data helps maintain a non-zero seepage height for the PINN's
predictions.

The corresponding PDE residuals, across the domain,
are shown in Figures 15 (also see S.F. 13, 14) and 17 (S.F.
17, 18) for Dupuit and Di Nucci cases. Unsurprisingly, the
PDE residual for the plain neural network is the highest,
close to 1 in regions of the domain, even for the training
regimes. In contrast, the PDE residuals are below 0.05 for the
training flow rates and below 0.5 in testing. PINNs that are
trained using the Dupuit and Di Nucci models show similar
PDE residuals. In particular, both cases show relatively
small residuals (< 0.001) across the training data when
using the inverted K values. This suggests that the Dupuit
equation describes the flow behavior sufficiently well within
the domain, and that the higher-order terms in the Di Nucci
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Model Type a Width Depth MSE, MSE,
1 mm bead size
N/A Plain NN 0 20 4 440%x10™* 9.91 x 1072
Dupuit Fixed K 1 20 4 1.15x 107 3.66x 1074
Di Nucci  Fixed K 1 20 4 1.15x 107 3.65x107*
Dupuit Inverted K 1 20 4 5.66x10™*  7.22x107°°
Di Nucci  Inverted K 1 20 4 573x10™*  8.20x 107
2 mm bead size
N/A Plain NN 0 20 4 1.51x10™* 1.64 x 107!
Dupuit Fixed K 1 20 4 1.84%x 107 1.34%x10™*
Di Nucci  Fixed K 1 20 4 2.03x 1073 1.83x107*
Dupuit Inverted K 1 20 4 271x10™*  7.83x107°°
Di Nucci  Inverted K 1 20 4 272x107*  8.02x107°

Table 2

A summary of hyperparameters along with the training losses for the prediction (fixed K) and inversion tests performed on the
experimental data corresponding to different bead sizes. MSE values correspond to neural networks presented in Figures 14 to 17

equation have only small effects in the experimental regimes
considered.

To assess our selection of the regularization parameter,
we again train PINNs using a € [0, 103]. We focus on the
case of using the inverted K values, as they are observed
to provide more accurate predictions. We plot the resulting
testing errors in Figure 9 as a function of the regularization
parameter «. These are averaged across 10 runs, each with
different initial neural network weights and permutations of
training and testing data sets. The figure shows predictions
made by PINNs with fixed K for 1 mm on the left and 2 mm
beads on the right. Again, we see that the PINNs based on
the two different models produce similar testing errors. We
also observe that the optimal choice for the regularization
parameter is around @ = 1, where the testing errors are below
2 x 1073 for 1 mm beads and 6 x 10~* for 2 mm beads. The
optimal range of « is similar to that found in our study using
synthetic data, and highlights the benefit of appropriately
scaling the data and PDE model.

789

7.2. Inversion of Hydraulic Conductivity 760

We also present the inverted values of hydraulic conduc-e,
tivity, K, for both the 1 mm and 2 mm cases in Table 3.4,
The table reports the mean and standard deviations of thees
inverted values across 10 different sets of initial weightsge,
biases, and K during neural network training. The recovered,qs
values of K compare well with their corresponding theoret-g,
ical estimates computed by the Cozeny-Karman relation. Ase,
we have noted, the corresponding PDE residuals are on thees
order of 1073 for the training data, suggesting that the PDE,q,
model is well satisfied by the trained network. This allowsso
us to interpret the recovered K values as meaningful PDE,,,
parameters. The small deviations in the K values are likelyso,
due to a discrepancy between the theoretical relationshipsss
and the heterogeneity in packing of the beads of the experiso,
mental setup. 805

806

Model Mean K (m/s) Std. Dev. K (m/s)
1 mm beads

Calculated 9.10x 1073 -

Dupuit 8.30 x 1073 3.25%x 107

Di Nucci 8.30 x 1073 2.64 x 1075
2 mm beads

Calculated 2.85 % 1072 -

Dupuit 3.48x 1072 1.24 x 107

Di Nucci 3.48 x 1072 1.09 x 10~

Table 3

Comparison of inverted and a-priori estimates of hydraulic
conductivity, K, from experimental data for a = 1. Inversion
results are mean and standard deviations (std. dev.) across
10 different sets of initial neural network parameters during
training.

8. Discussion

PINNS are able to improve upon the predictions given by
solving the simplified PDE models alone. Admittedly, the
Dupuit-Boussinesq approximation and Di Nucci equations
do not fully represent the physics in the system. However,
PINNs improve upon the predictions by supplementing in-
complete PDE information with experimental training data,
without resorting to high-fidelity, computationally expen-
sive, multi-dimensional two-phase flow models. Further-
more, when considering the difficulty in prescribing appro-
priate boundary conditions for flows with seepage faces,
we cannot make predictions directly using the PDEs. Even
with the relatively simple Dupuit-Boussinesq equation that
neglects vertical flow effects, seepage face development,
and incomplete boundary specifications, we are able to use
PINNs to make meaningful predictions regarding phreatic
surface height and hydraulic conductivity values merely by
using experimental data. By considering the information
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from the data, the seepage face height and even lake-leveks:
dynamics can be considered. 862
As a method of learning flow profiles from experimentakss
data, we observe that PINNs tend to have greater generaliza-sea
tion capabilities compared to a conventional neural networkess
when trained on limited amounts of training data. The PDEses
based regularization makes it less sensitive to the noise imeer
data and helps to prevent overfitting in a physics informedss
manner. Critical to this is the choice of regularization pa-=sse
rameter «. In our formulation, @ = 1 naturally represents
a balance between the data and PDE misfit terms when the
training data and PDE terms are normalized. This appears to"°
yield optimal testing errors across many of our experimentssz:
and highlights the benefits of scaling not only the input ands2
output variables in the neural network, but also the PDE ire7s
physics informed machine learning. Furthermore, the PDEs7s
based regularization also reduces the burden of tuning othewszs
hyperparameters such as the neural network size. 876
Moreover, PINN is able to accurately recover hydraulic
conductivity from the data. The deviations in inverted values
of hydraulic conductivity versus the theoretical estimates
can be due to many reasons; a combination of experimentaks
error and the empirical nature of the theory. We believe thes7e
inverted values of K are more accurate than those calculatedsso
Also, this is a simple, novel way of estimating the hydraulicss:
conductivity through in-situ measurements of free surfacess2
heights as opposed to lab-based permeameters tests. As arges
extension to this work, instead of constant permeability, s+
2D permeability field K(x) and boundary conditions can besss

inverted for separately or jointly. 886
887

9. Conclusions

In this paper, we have investigated steady groundwater
flow using Physics Informed Neural Networks. The freé®®
surface profile data comes from analytical results of Dupuit—:::
Boussinesq and Di Nucci models and moreover, laboratory,,,
experiments. PINNs make accurate predictions of the freesos
surface profiles on both training and test data and are lesgos
sensitive to noise. The conventional neural network gives®®
oscillatory and non-physical behavior on the same data set: ::
due to lack of physics information. so8

In our adopted framework, the regularization parametessso
for the PDE misfit plays the role in balancing the informatioreeo
from the data and the PDE model. The optimal value of°*
PDE misfit regularization parameter, selected on the basis::2
of minimizing generalization error, has been found closg,,
to unity which performs very well on both synthetic andos
experimental data. This value bolsters the importance ofes
scaling the data and PDE misfit in order to balance th&®”
amount of information while training the PINNs. Note tha€ Z:
when the PDE represents the physics completely, methods,,,
like augmented Lagrangian could be used to strongly enforces:
the boundary and initial conditions on the PDE loss (Basie22
and Senocak, 2022), eliminating the need for tuning thé*?

. . 914
regularlzatlon parameter. 015

916

Note that when the PDE represents the physics com-
pletely, methods like augmented Lagrangian could be used
to strongly enforce the PDE while eliminating the need
for tuning the regularization parameter. Further, hydraulic
conductivity has been inverted for the training data which
gives fairly accurate predictions of free surface profiles and
is close to the theoretical estimates. In the future, we plan
to extend this PINNs model to study transient groundwater
flow dynamics.

Data availability

All related codes are available on Github: https://
github.com/dc-1uo/seepagePINN (Shadab, Luo, Shen, Hiatt
and Hesse, 2021). Additionally, we have developed a simple
toolbox that can be used to investigate steady groundwater
flow dynamics. A manual is provided in the Github reposi-
tory.
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Figure 4: Neural network predictions of free surface profiles
with varying @, using the Dupuit equation as the regularizing
PDE. The plots show the effect of changing the specific
discharge ¢ = 107* = 107> m3/m.s (shown in titles) and PDE
regularization parameter @ = 0 — 10°. Data and PDE refer to
the noisy and noiseless data, respectively.
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PINNSs regularized by Di Nucci equation.
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Figure 11: The PDE misfit terms inside the domain while
inverting for K, corresponding to Figure 10, using the Dupuit

equation as

the regularizing PDE.

Shadab et al.: Preprint submitted to Elsevier

Page 16 of 12



PINNSs for Groundwater Flow

Di Nucci (training), g =1.00 X 10~* (m?/s)

1.4
— a=0 a=10
1.2 — a=10"% — a=10?
— a=10"%* — a=103
1.0 a=10"2 e Data
— -1
08 a=10 PDE
£ a=1
< 0.6
0.4
0.2 p—
0.0 j—
0.00 0.25 0.50 0.75 1.00 1.25 1.50
X (m)
14 Di Nucci (training), g =3.57 X 10~* (m?/s)
1.2
1.0

h (m)
N
> =] 2]

0.2
0.0
0.00 0.25 0.50 0.75 1.00 1.25 1.50
X (m)
14 Di Nucci (training), g =7.43 x 10™* (m?/s)
1.2

h (m)
o o o =~
B o © o

0.2
0.0
0.00 0.25 050 0.75 1.00 1.25 1.50
X (m)
14 Di Nucci (training), g =1.00 x 1073 (m?/s)

h (m)
(=} o - [
o »® o

0.4

0.2

0.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50
X (m)

Figure 12: Training data and neural network predictions for
free surface height while inverting for K, using the Di Nucci
equation as the regularizing PDE.
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Figure 13: PDE residual for Di Nucci model based PINNs pre-
dictions corresponding to Figure 12 for different regularization
parameters.
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Figure 14: Neural network predictions of free surface profiles Figure 15: The PDE residuals inside the domain corresponding
for the experimental data using 1 mm beads. to free surface profile predictions for 1 mm bead size, shown
in Figure 14.
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Figure 16: Neural network predictions of free surface profiles

for the experimental data using 2 mm beads.
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Figure 17: The PDE residuals inside the domain corresponding
to free surface profile predictions for 2 mm bead size, shown
in Figure 16.
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