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ABSTRACT
A deep learning technique called Physics Informed Neural Networks (PINNs) is adapted t
steady groundwater flow in unconfined aquifers. This technique utilizes information from und
physics represented in the form of partial differential equations (PDEs) alongside data obtaine
physical observations. In this work, we consider the Dupuit-Boussinesq equation, which is b
the Dupuit-Forchheimer approximation, as well as a recent, more complete model derived by D
(2018) as underlying models. We then train PINNs on data obtained from steady-state an
solutions and laboratory based experiments.

Using PINNs, we predict phreatic surface profiles given different input flow conditions and
estimates for the hydraulic conductivity from the experimental observations. We show that PIN
eliminate the inherent inability of the Dupuit-Boussinesq equation to predict flows with seepag
Moreover, the inclusion of physics information from the Di Nucci and Dupuit-Boussinesq
constrains the solution space and produces better predictions than training on data alone. PINN
predictions are robust and show a little effect from added noise in the training data. Furthe
we compare the PINNs solutions obtained via the Di Nucci and Dupuit-Boussinesq flow mo
examine the effects of higher order flow terms that are included in the Di Nucci formulat
are neglected by the Dupuit-Boussinesq approximation. Lastly, we discuss the effectiveness o
PINNs for examining groundwater flow.

duction
cale groundwater flow in an unconfined aquifer is
eled using vertically integrated models resulting
uit-Boussinesq (or Boussinesq) equation, which
dimensionality of the problems (Boussinesq,

r, 1972). These approaches exploit the “shallow
most unconfined aquifers, i.e., their small aspect
L, where H is the average thickness of the

one andL the horizontal extent of the aquifer. The
ussinesq equation, given in Equation (1), is based
uit-Forchheimer approximation and neglects the
rtical flow via the shallow water assumption that
m the order of magnitude analysis of the mass
., vz∕vx = (H∕L), where vz and vx are verticalntal flow velocities respectively (Dupuit, 1863;
er, 1901; Bear, 1972). The Dupuit-Boussinesq
as been extended to include the effect of vertical
overall flow dynamics by a series of extended
equations (Di Nucci, 2018). These equations

used to describe the water wave propagation in
dia as a consequence of wave interactions with
and tide-induced fluctuations (Di Nucci, 2018).
onding author
adab@utexas.edu (M.A. Shadab); mhesse@jsg.utexas.edu

s://mashadab.github.io/ (M.A. Shadab);
sg.utexas.edu/hesse/marc-hesse/ (M.A. Hesse)
): 0000-0002-0797-5017 (M.A. Shadab); 0000-0002-2532-3274

One important problem in using Boussinesq-type29

tions is the inability to account for the formation30

seepage face. A seepage face typically forms at steep l31

boundaries of the aquifer, where groundwater debo32

into atmospheric pressure (Figure 1). The seepage33

by definition, is a boundary at which the hydraulic34

sure head becomes zero or equivalently, the potentiom35

head becomes the height of the saturated groundwater36

Analysis of the seepage face is a central compone37

many geotechnical, hydrogeological and geomorphol38

studies. In hydrology, seepage analysis is of interest f39

design of hydraulic structures such as earth dams or40

embankments (Simpson, Clement and Gallop, 2003;41

eler, Paniconi, Pasetto and Putti, 2017; Hiatt, Shadab,42

and Gulick, 2021). Some models attempt to include se43

face dynamics by computational means, such as bou44

cell deactivation or simplified extensions of the B45

nesq equation, however these approaches lack the un46

ing physics of the system (Baird, Mason and Horn,47

Di Nucci, 2018; Rushton and Youngs, 2010). Thoug48

models attempt to capture the physics, a recent mathem49

model developed by Di Nucci (2018) accounts for50

vertical flow effects and seepage face development51

still neglecting capillary fringe effects. To understan52

hydrologic conditions in which either Dupuit-Bouss53

or Di Nucci model is most applicable, it is imperat54

compare both models with experimental data. Di N55

formulation requires a far field, free boundary gradi56

zero in order to obtain steady state analytic results57
al.: Preprint submitted to Elsevier Page 1 of 12
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e of laboratory experiments, this is not possible.
tly, a data-based comparison of the two ordinary
equation models is required.
past, artificial neural networks have been used
the behavior of seepage flows (Ma, Huang, Liu,
iz and Meints, 2020; Rehamnia, Benlaoukli,
rbasi and Malik, 2021; Tayfur, 2014; Nourani
hani, 2013). However, artifical neural networks,
the essential physics described by partial dif-

quation (PDE) models. To incorporate the un-
ysics, information provided by PDE models can
ed into the training of the neural networks. In
Dissanayake and Phan-Thien (1994) proposed a
solving PDEs by representing the PDE solution
network, and minimizing a loss function defined
f the residual of the PDE. This approach was
eloped and popularized more recently by Raissi,
and Karniadakis (2019) to tackle both forward
e problems, referring to it as “Physics Informed
tworks (PINNs)”. In addition to improving the
f predictions, the physics based PINNs method
aneously infer PDE model parameters, such as
conductivity. Furthermore, the PINNs method
the inability of Dupuit-Boussinesq equation to
seepage face by supplementing the Dupuit-
equation with additional information through
data. The PINNs method has also been success-
mented in diverse fields such as fluid mechanics
oack and Koumoutsakos, 2020; Raissi, Yazdani
dakis, 2020; Jin, Cai, Li and Karniadakis, 2021),
ineering (Jagtap, Mitsotakis and Karniadakis,
ndestructive testing Shukla, Di Leoni, Black-
kman and Karniadakis (2020); Shukla, Jagtap,
, Sparkman and Karniadakis (2021), cardiology
tabal, Yang, Perdikaris, Hurtado and Kuhl, 2020)
(Chen, Lu, Karniadakis and Dal Negro, 2020; van
iribiri, Breeuwer, Veta and Scannell, 2020).
undwater applications, PINNs have been em-
invert for model parameters and constitutive
ps for steady-state cases using synthetically gen-
a (Meng and Karniadakis, 2020; Tartakovsky,
erdikaris, Tartakovsky and Barajas-Solano, 2020;
s-Solano, Tartakovsky and Tartakovsky, 2020;
Ghezzehei, 2020; Zhang, Zhu, Wang, Ju, Qian,

ng, 2022). However, Depina, Jain, Mar Valsson
ac (2021) is the only work that uses PINNs
with data from laboratory scale, porous me-
ments, and considers unsaturated groundwater
Richards’ equation to find van-Genuchten (van
, 1980) model parameters, soil moisture profiles
etic data, andmeasurements of a one-dimensional
ter infiltration column test. In contrast, we focus
-dimensional problem of steady unconfined flow
page face. In this aim, a data-based comparison
Boussinesq and Di Nucci models is required to
the effects of higher order, vertical flow terms

and the conditions for which each approximation re114

appropriate.115

In this work, we apply the PINNs technique to inves116

the dynamics of the water table with a seepage face.117

we train PINNs using synthetic data, where “ground t118

are available, to demonstrate its predictive capabilitie119

then apply this technique to experimental data, and go120

predict free surface profiles and recover the hydraulic121

ductivity from training data. Next, we compare the two122

els of unconfined groundwater flow using PINNs. F123

we discuss the effectiveness of using PINNs to ex124

steady groundwater flows and predict free surface pr125

and seepage face heights.126

The remainder of this paper is summarized as fo127

Sections 2 and 3 revisit the theories underpinning th128

physics-based groundwater flow models and physi129

formed neural networks. Section 4 focuses on the speci130

plication of PINNs to investigate steady unconfined gr131

water flow. Section 5 discusses the methods involv132

generating synthetic and experimental data. Section133

7 summarize the salient results when applying PINN134

plain neural network on synthetic and experimenta135

respectively. Section 8 discusses the result’s implic136

on groundwater flow, and it is followed by conclusio137

section 9.138

2. Physics based groundwater flow models139

2.1. Boussinesq equation140

For unsteady and unconfined flows in a homoge141

porous media, the Dupuit-Boussinesq equation is the142

widely used to approximate flow. (Boussinesq, 190143

is based on the Dupuit-Forchheimer approximation,144

assumes dominant horizontal flow driven by the gradi145

the groundwater table (Dupuit, 1863; Forchheimer, 1146

By implication, the water column at any horizontal lo147

is in hydrostatic equilibrium and the gradients are onl148

to the lateral variance of pressure in the groundwater149

In the absence of a source term, i.e., no recharge,150

level, impervious base, the Dupuit-Boussinesq equatio151

be written as152

�)ℎ
)t
− )
)x

(
Kℎ)ℎ

)x

)
= 0, t ∈ (0,∞), x ∈ (0, L

where x is the horizontal spatial coordinate (m), ℎ(x)153

height of the free surface above the impervious base (154

(-) is the porosity of the medium (-), and K is the hyd155

conductivity (m/s). The porous medium is assumed156

homogeneous and isotropic. At steady-state, Equatio157

reduces to the following nonlinear boundary value pro158

− d
dx

(
Kℎdℎ

dx

)
= 0, x ∈ (0, L),

which can be solved analytically given appropriate bou159

conditions. For the steady seepage problem shown in160

ure 1 we have the following boundary conditions161

ℎ(x = 0,∞) = constant, q(x = L,∞) = −Kℎdℎ
|||162
dx ||x=L
al.: Preprint submitted to Elsevier Page 2 of 12
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x = L, transient seepage face height sf (t) at x = 0,
ke height ℎl(t), and transient free surface height
heights are calculated from the impermeable base
The domain extends from x = 0 to x = L, and
e face height is given as sf (t) = ℎ(0, t) − ℎl(t).
gure can be used for the Dupuit-Boussinesq model
g two underlying assumptions. First, the Dupuit-
model assumes the seepage face height sf (t) to be
d, the far-field head ℎ(x, L) is not specified.

eepage face is located at x = 0, and t = ∞ refers
able value at the steady-state, q is the discharge
dth in the third dimension (m2/s). Note that in the
odel, ℎ(0,∞) is strictly the steady hydraulic head
e the aquifer discharges ℎl(∞) but here we also
e seepage face height sf (∞) as it is necessary
ly predict ℎ(x,∞) experimental values. However,
e face height is typically not known a-priori. Inte-
twice and using the boundary conditions yields
t-Forchheimer discharge formula (4) (Hantush,
ham, 1967; Hesse andWoods, 2010; Bear, 1972).

∞) =
√
ℎ(0,∞)2 + 2qx

K
, x ∈ [0, L]. (4)

nt difficulty of this method lies in the need for
condition that is at the seepage face, x = 0,
ht is a combination of the known water level in
ir, ℎl, and the unknown height of the seepage
re 1). This problem is commonly neglected and
water table is set equal to the surface water table
water debouches.
ucci model
del derived by Di Nucci (2018) couples a Dupuit-
type equation with Darcy’s law and solves a

sional PDE resulting from the two-dimensional
ree surface flow in a homogeneous, isotropic
s shown by the schematic diagram in Figure 1.
l flow is included by considering a higher-order,
m in the flux formulation. This term is given in
5), as well as the first-order term associated with
. A unique solution is possible using a boundary
with time dependent flux at the seepage face,
n by Equation (7) and a constant hydraulic head
upstream boundary, x = L, given by Equation

for by a mass and momentum balance as well as Cau197

integral relation theorem for potential and stream fun198

relationships (Bear, 1972; Di Nucci, 2018). The res199

governing equations take the form:200

q
K

= − )
)x

[
ℎ2

2
− 1
K

)
)x

( q
ℎ

) ℎ3
3

]
,201

1
K
)q
)x

= − �
K
)ℎ
)t
, t ∈ (0,∞), x ∈ (0, L)202

subject to boundary conditions:203

q
K
(0, t) = g(t),204

ℎ(L, t) = H = constant,205
206

where q(x, t) is again the discharge per unit width (207

Moreover, g(t) is considered a function of time to repr208

the boundary condition of the 2D problem, which c209

considered as210

q
K
(0, t) =

H2 − ℎ2l (∞)
2L

211
212

for a steady-state lake level of ℎl(∞). The integral re213

arising from Cauchy theorem is214

1
2
ℎ2l (t) =

1
2
H2 − ∫

L

0

1
K
q(x, t)dx,215

216

where ℎl(t) is the time varying height of lake which217

considered in Dupuit-Boussinesq approximation. The218

sient seepage face height sf (t) (in m) can then be calc219

using220

sf (t) = ℎ(0, t) − ℎl(t)221

= ℎ(0, t) −

√
H2 − 2∫

L

0

1
K
q(x, t)dx.222

223

For steady-state, Equation (5) and (10) take the form224

q
K
= − d

dx

(
ℎ2

2
+ q
K
dℎ
dx
ℎ
3

)
and225

q
K
=
H2 − ℎ2l (∞)

2L
.226

227

Also, q(x,∞) = q becomes a constant in both spac228

time, stemming from Equation (6). For the boundary c229

tions,230

dℎ
dx
(L,∞) = 0 and ℎ(L,∞) = H,231

the analytical result for free surface height ℎ(x,∞) is232

ℎ(x,∞) =233 √
H2 − 2q(L − x)

K
+ 2
3
q2

K2

[
1 − exp

(
−3K(L

q
234
ver, the seepage face development is accounted (15)235

al.: Preprint submitted to Elsevier Page 3 of 12
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following l270
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(15) with (13) gives the steady-state seepage face

) = ℎ(0,∞) − ℎl(∞)

= 2q2

3K2

(
1 − exp

(
− 3KLq

))

ℎ(0,∞) + ℎl(∞)
. (16)

e Di Nucci model determines the unknown steady
e groundwater table, ℎ(0,∞), at the seepage face.

cs informed neural networks
neural networks for function
oximations
eural networks have been extensively studied for
e of approximating arbitrary functions (Hornik,
be and White, 1989). Dissanayake and Phan-
4) first utilized neural networks to forward solve
ssembling the residual form of a given PDE and
ry conditions as soft constraints for training the
ork model. We refer to Goodfellow, Bengio and
2016) for a full exposition of neural networks and
, and Lu, Meng, Mao and Karniadakis (2021a)
ication to the context of approximating solutions
ere, we present the formulation for a standard,
rd neural network, such as that described in Lu
1a). A feed-forward neural network defines the
rom an input ℝnin to output space ℝnout based
ive, nonlinear transformations through layers of
e refer to the first layer as the input layer, the
s the output layer, and additional layers as hidden
ivation values are passed from one layer to the
activation function composed along with a linear
tion. The neural networkmapping, uNN (x), givenctor, ℝnin , can be mathematically represented as
(x; �) ∶= (vN−1◦vN−2◦...◦v1)(x), (17)
enotes the composition of two functions (i.e.
= v2(v1(x)) and vi maps the ith layer to its

ayer through
) = �i(Wix + bi) for i = 1, 2, ..., N. (18)
resentation, transformations between the layers
terized by weights Wi ∈ ℝni×ni−1 and biases
collectively written as � = {Wi, bi}N−1i=1 . Here,
otal number of layers and ni is the width of the
he function �i(⋅) is the activation function for
r, which is typically a nonlinear function applied
ise to its input vector. The possible choices for
ion function are numerous and include common
ations such as the sigmoid, ReLu and softplus
Goodfellow et al., 2016; Lu et al., 2021a). The
unction, for the output layer, can be chosen based
ired output of the neural network. Derivatives of
etwork output with respect to the inputs, weights,

(Rumelhart, Hinton and Williams, 1986; Baydin, Pear287

ter, Radul and Siskind, 2018).288

Given a training dataset t = {(xi, ui)}Nt
i=1 consist289

Nt inputs xi and outputs ui, the neural network is train290

minimizing a loss function. This is commonly taken291

the mean squared error (MSE) between the neural ne292

outputs and the training data. Thus, we can write293

�∗ = argmin
�

1
Nt

Nt∑
i=1
(uNN (xi; �) − ui)2,294

where �∗ represents the optimal weights and biases295

optimization problem within training the neural netw296

frequently solved using gradient based optimization297

rithms such as stochastic gradient descent (Bottou, 2298

ADAM (Kingma and Ba, 2014), and limited-memory B299

(L-BFGS) (Liu and Nocedal, 1989).300

To avoid over-fitting, additional regularization301

may be included in the loss function such as l1 or l2 n302

of the weights and biases (Goodfellow et al., 2016). Fo303

neural networks with a large number of neurons, a pr304

known as dropout can also be employed during trainin305

form of regularization. This technique omits randomw306

and biases during training (Srivastava, Hinton, Krizhe307

Sutskever and Salakhutdinov, 2014).308

3.2. PINNs for solving forward and inverse309

problems310

3.2.1. Learning forward solutions311

Physics informed neural networks (Raissi et al.,312

aim to enforce physics based constraints on the neura313

work to improve the effectiveness of the technique314

applied to physical systems (Tartakovsky et al., 2020)315

posing a physical system has state u(x, t) which is gov316

by a nonlinear PDE of the form317

ut + (u; �) = 0,318

where  is a nonlinear differential operator and � c319

of model parameters defining the PDE. Within the P320

framework, the state u(x, t) is approximated by a feedfo321

neural network uNN (x, t), as defined in (17). Inform322

given by the PDE is incorporated into the training323

neural network by defining the loss function as324

(t,c , �) = MSEu + �MSEf ,325
326

where327

Data misfit,MSEu = 1
Nt

Nt∑
i=1
(uNN (xi, ti) − ui)2328

PDE misfit,MSEf = 1
Nc

Nc∑
i=1

|f (uNN (xi, ti); �)329

330

Here, MSE is the mean-squared error loss term a331
, can be obtained using automatic differentiation referred to as the misfit term in this paper. Moreover,332

al.: Preprint submitted to Elsevier Page 4 of 12
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f (u(x, t); �333

Nt is the334

{(xi, ti, ui)335

the form 336

parameter.337
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) ∶= ut(x, t) + (u(x, t); �) is the PDE residual,
number of data points in the training set t =
}Nt
i=1, Nc is the number of collocation points of
c = {(xj , tj)}

Nc
j=1, and � is the PDE regularization

The data misfit term, MSEu, is evaluated on the
ta points where the state is known. The PDEmisfit
f , is evaluated via automatic differentiation on
tion points (xi, ti) ∈ c where the state is not
known. The MSEf adds physics information to
network by encouraging the satisfaction of the
PDE on the collocation points. The parameter �
sen to balance the relative effects of data and PDE
the neural network. Once trained, the optimal
d biases are determined as �∗

argmin
�

(t,c , �) (24)

ulting neural network uNN is used to predict the
ired points (x, t).
INNs formulation can be used as a solver for
y supplying initial and boundary conditions as
ta and then using points on the interior of the
collocation points for evaluation of the PDEmisfit
al., 2019). The neural network is then trained
initial and boundary data while satisfying the
ernatively, initial and boundary conditions can
d as hard constraints by directly building them
ural network approximation, uNN , through an
unction (Lagaris, Likas and Fotiadis, 1998; Lu,
Yao, Wang, Verdugo and Johnson, 2021b), or
use of constrained optimization algorithms such

alty and augmented Lagrangian methods (Basir
k, 2022).
rning parameterized forward-solutions
o consider a parameterization involving an addi-
t variable, �. For example, � can parameterize
source terms over which the neural network is
ictive. In this case, we construct the neural net-
ximation, uNN (x, t, �), with the additional input
. We train the neural network using training data
ti, �i, ui)}

Nt
i=1 corresponding to different values of

bles. We adopt the same loss function as in (21)

t,MSEu = 1
Nt

Nt∑
i=1
(uNN (xi, ti, �i) − ui)2, (25)

,MSEf = 1
Nt

Nt∑
i=1

|f (uNN (xi, ti, �i), �i; �)|2,
(26)

e use the training data points to evaluate both the
DE misfits. Again, we can optimize the weights
to obtain our neural network approximation.
approach, the neural network is essentially trained

resulting neural network predictions represent a fitti382

training data that is also informed by the physics asso383

with the PDE and scaled with the weighing parame384

Crucially, the PDE used does not need to capture385

the physics. Instead, we can adopt this approach even386

initial or boundary conditions are not specified becau387

PDE is only used as regularization and does not need388

solved in training.389

3.2.3. Inverting for model parameters390

When model parameters � are unknown, they c391

inverted for, during training, by defining them as addi392

optimization variables along with the weights and bia393

The optimization problem then takes the form394

(�∗, �∗) = argmin
�,�

(t,c , �, �).395

It must be noted that in either case, (24 or 27), the396

does not need to be satisfied exactly by the trained n397

network. Instead, the PDE misfit is only minimized398

extent achievable by the training process. Therefor399

recovered parameter values have a meaningful physic400

terpretation only when the PDE is well satisfied by the n401

network. Otherwise, the recovered parameters serve o402

improve predictions made by the neural network. R403

improvements aim to address this issue. For example,404

and Senocak (2022) ensures that the PDE misfit van405

in training through the use of the augmented Lagra406

method.407

4. PINNs for examining steady unconfined408

groundwater flows409

We apply PINNs in the context of steady ground410

seepage in homogeneous porous media. Physics inform411

is incorporated into the training of the PINNs through412

models of quasi-1D seepage flow. In particular, we co413

both the Dupuit-Boussinesq equation and Di Nucci’s414

tion as potential models.415

4.1. PDE models416

Under steady-state conditions, the Dupuit approxim417

given by Equation (2) can be integrated with the flow b418

ary condition (3) to yield419

q +Kℎdℎ
dx

= 0, x ∈ (0, L),420
421

and similarly integrating the Di Nucci’s model ODE422

flow boundary condition takes the form previously de423

in Equation (12) as424

q +Kℎdℎ
dx

+ q
3
d
dx

(
ℎdℎ
dx

)
= 0, x ∈ (0, L).425

In both equations, q, the flow rate per unit width, is co426

in space due to the absence of recharge, and parametriz427

flow profile ℎ(x). For the purpose of training, we norm428

the two equations by this non-zero constant such th429
ile using the PDE as a form of regularization. The
al.: Preprint submitted to Elsevier Page 5 of 12



Journal Pre-proof

PINNs for Groundwater Flow

source term430

equation ca431

fDupu432

and the res433

fDiNucci(ℎ,

434

4.2. Lear435

seep436

Our go437

profiles pa438

accomplish439

ℎNN (x, q)440

flow rate pe441

given in ter442

the inputs443

informatio444

equations445

the steady-446

neglected.447

Instead
the neural
output vari
data, xmaxinputs and

x̃ =

and constr
scaled posi
scaled free
for free sur

ℎNN

Scaling of448

ables x̃ an449

to accelera450

Keller, 200451

simplifies t452

which will453

In addi454

enters as a455

throughout456

have PDEs457

f (ℎ(458

using eithe459

define the460

(461

(35)

i, and
te the
same
(26),

ted by
solve
r, it is
ns for
s. As
t, the
iffers
etric
lation
stead,
le in
m the
ill not
ction.
ty, K ,
uring
nsider
which
o the
sured
better

fully
shows
he Di
ves 4
. The
idden
or the
eights
ℎNNder to
ct the
ers �∗
uctiv-
ative,
ploy

zation
cases,
FGS
rm of

Shadab et
Jo
ur

na
l P

re
-p

ro
of

is of(1). In this case, the residual of the Dupuit
n be re-written as

it(ℎ, q;K) ∶= 1+
K
q
ℎdℎ
dx

= 0, x ∈ (0, L) (30)

idual of the Di Nucci equation becomes

q;K) ∶= 1+K
q
ℎdℎ
dx
+1
3
d
dx

(
ℎdℎ
dx

)
= 0, x ∈ (0, L).

(31)
ning flow-parametrized solutions to
age equations
al is to be able to predict the phreatic surface
rameterized by the flow rate per unit width q. To
this, we seek a neural network approximation,

, which takes the longitudinal position, x, and the
r unit width, q, as input variables. Training data is
ms of the free surface height,ℎi, corresponding to
(xi, qi). Furthermore, we incorporate the physics
n provided through either the Dupuit or Di Nucci
under the PINN framework. This formulation is
state and therefore, the time component can be
of directly approximating ℎ(x, q), we construct
network approximation by scaling the input and
ables by their maximal values within the training
, qmax, and ℎmax. That is, we define the scaled
outputs,
x

xmax
, q̃ = q

qmax
, ℎ̃ = ℎ

ℎmax
, (32)

uct a neural network ℎ̃NN (x̃, q̃) that takes the
tion and flow variables as inputs, and outputs the
surface height.We can recover the approximation
face height by

(x, q) = ℎ̃NN
(

x
xmax

,
q
qmax

)
ℎmax. (33)

the variables helps to ensure that the input vari-
d q̃ are of similar magnitudes, which can help
te training of the neural network (Priddy and
5). Furthermore, scaling the output variable also
he interpretation of the regularization parameter,
be discussed later.
tion to the flow rate, the hydraulic conductivityK
model parameter, which is treated as a constant
the domain. Thus, in the steady-state case, we
of the form
x), q;K) = 0, x ∈ Ω, (34)
r f = fDupuit or f = fDiNucci. This allows us totraining loss as

t, �, K) =
1

Nt∑
(ℎ̃NN (x̃i, q̃i; �) − ℎ̃i)2

+ �
Nt

Nt∑
i=1

|f (ℎNN (xi, qi), qi;K)|2462

463

given training data t = {(xi, qi, ℎi)}
Nt
i=1, with x̃i, q̃464

ℎ̃i denoting their scaled values. Note that we evalua465

PDE misfit using re-dimensionalized variables on the466

locations as the training data, as in Equations (25) and467

and the corresponding derivatives of ℎNN are compu468

a simple change of variable based on Equation (33).469

Typically, boundary conditions are also required to470

for the complete flow profile using the PDEs. Howeve471

difficult to determine appropriate boundary conditio472

both the Dupuit-Boussinesq and Di Nucci equation473

previously discussed, when a seepage face is presen474

piezometric head where water debouches the media d475

from the surface water height at that point. This piezom476

head is unknown a priori. However, the PINNs formu477

does not require imposing a boundary condition. In478

the PDE is used as regularization for the flow profi479

the interior of the domain and the data helps to infor480

neural network about the boundary. Therefore, we w481

explicitly employ a boundarymisfit term in the loss fun482

When accurate estimates for hydraulic conductivi483

are not available, we can invert for the value of K d484

training based on the training data. To do so, we co485

K as a variable that may be optimized in training,486

is updated based on the loss function (35). Due t487

uncertainties associated with the experimentally mea488

K , inverting forK in training can produce amodel that489

fits the training data.490

4.3. PINNs implementation491

This study’s investigations are performed with492

connected, feed-forward neural networks. Figure 2493

the architecture diagrams of the PINNs based on t494

Nucci model. The default architecture utilized invol495

hidden network layers that are each 20 neurons wide496

hyperbolic-tangent activation function is used for all h497

layers, while a softplus activation function is used f498

output layer to ensure the predicted free surface h499

are non-negative. The output of the neural network500

is automatically differentiated with respect to x in or501

compute the PDE misfit term.502

The loss function (35) is then minimized to predi503

optimal weights and biases �∗ (24), andmodel paramet504

(hydraulic conductivity K) (27). Since hydraulic cond505

ity can vary by orders of magnitudes and cannot be neg506

we invert for the log of hydraulic conductivityK .We em507

a combination of the ADAM and L-BFGS optimi508

algorithms to train the neural networks. In all training509

we perform 50,000 ADAM iterations followed by L-B510

until convergence to a tolerance of � = 10−8 on the no511

the gradient of the loss function.512
Nt i=1

al.: Preprint submitted to Elsevier Page 6 of 12
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Figure 2: N odel.
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eural network architecture diagrams of PINN for investigating steady-state groundwater flows using Di Nucci m

tion of a regularization parameter for
DE misfit term
xist sophisticated, adaptive regularization schemes
arning rate annealing, neural tangent kernel,
ax weighting (McClenny and Braga-Neto, 2020;
g and Perdikaris, 2021), predominantly used to
e forward solution of PDE systems. However, in
we choose non-adaptive regularization in order
the complexity of the loss term while getting
accurate predictions. A scaling analysis of the
terms in the loss function aids in selecting the
regularization parameter �. Considering a trivial
ork ℎNN = 0, we observe that the data misfit

Eℎ =
1
Nt

Nt∑
i=1
(ℎ̃i − ℎ̃NN (xi, qi))2 ∼ (1)

caling of the output variable. The PDEmisfit term

f =
1
Nt

Nt∑
i=1

f (ℎNN (xi, qi), qi;K)2 ∼ (1)
choice of normalization for the PDE. With a
= (1), we expect the significance of the data
comparable to the PDE misfit. In this paper, we

egularization parameter as a fixed hyperparameter
e the testing errors of the neural networks. More-
onduct a comprehensive investigation of testing
different hyperparameters, training data and PDE
th � = 1 as a reference point.

generation
tic data is generated using the analytical solutions

for the Di Nucci models respectively. The analytical r540

ℎ(x) at selected values of (xi, qi) are then corrupt541

Gaussian white noise with standard deviation that is542

the maximum ℎ(x) in the dataset. Synthetic data is543

to test the performance of the neural networks as bo544

model and its parameters are known.545

We also perform our analysis on experimental d546

steady groundwater flow that was obtained using th547

perimental design shown in Figure 3. The setup cons548

an acrylic cell of length 167 cm, height 45 cm and549

2.54 cm (in the third dimension) which contains a p550

region filled with 1 or 2 mm diameter beads. Dyed w551

pumped from the right boundary x = L at a specified552

rate which subsequently drains from the seepage face553

left boundary x = 0 with zero head at the gravity wel554

ℎl = 0. A camera, placed orthogonally in front of th555

takes pictures which are then processed using a Matlab556

to digitize and extract the free surface profiles.

Acrylic cell filled with beads

Seepage 
face

Dyed water
Pu

Free surface

Figure 3: A picture of the experimental setup.

557
PDEs; (4) for the Dupuit-Boussinesq and (15)
al.: Preprint submitted to Elsevier Page 7 of 12
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y-state results using synthetic data
ning parametrized solutions from
hetic data
tic data (xi, qi, ℎi) is generated from 8 linearly
values of q ∈ [10−4, 10−3]m2/s and 30 equidis-
of x ∈ [0, 1.65] m with K = 0.002 m/s. These
selected to resemble those found in the experi-
a. PINNs are then trained using the synthetic data
its corresponding PDE as regularization. The

t is evaluated using the same locations (xi, qi) asdata.We highlight that the seepage face height in
ic data using the conventional Dupuit-Boussinesq
ero prior to adding noise, but is non-zero for Di
el.
t examine the effects of the regularization param-
Ns are trained with increasing values of � from
to � = 103. Here � = 0 corresponds to a plain
orkwhich does not incorporate any physics infor-
e consider both fixing the hydraulic conductivity
ultaneously inverting for K in training. For the
lues of q, we plot the noisy free surface data along
redictions of the neural networks trained using
of �. Examples of the resulting free surface pro-
own in Figures 4 (also see Supplementary Figure
.F. 3) for the Dupuit and Di Nucci equations using
h fixed K and in Figures 10 (S.F. 7) and 12 (S.F.
upuit and Di Nucci equations using PINNs with
. All results are available in the supplementary file
ponding figure references given in the parenthesis
to each case. These profiles are plotted alongside
data, as well as the true noise-free profiles from
ing PDE solutions.
eral, we observe extreme overfitting for small
� due to the lack of regularization, both with
t inversion for K . The overfitting is reduced by
�, as the PDE is more strongly respected relative
ing data. This happens due to the introduction of
information to the neural network from the PDE
in objective function. Increasing � increases the
f when compared with the underlying noise-free
ion. In the case with fixed K , the range of � ∈
lead to similar predictions of the profile. However,
es beyond this (e.g. � = 103), the predictions
m the data due to the excessive weighting on
isfit. This is unhelpful in this case as the PDE
ion alone does not determine the flow profile due
of boundary conditions. Instead, data is needed to
ormation about the seepage face to constrain the
imilar observations can be made for the profiles
m the PINNs with inverted K . This suggests that
ant to find an optimal regularization parameter �.
ffect is illustrated further in the plots of PDE
side the domain, corresponding to predicted free
files. These are shown for Dupuit model in Figure
nd Di Nucci model in Figure 7 (S.F. 4) for PINNs
K , and Dupuit model in Figure 11 (S.F. 8) and Di

Nucci model in Figure 13 (S.F. S10) for PINNs with inv614

K . From these plots, it is evident that increasing � dec615

the PDE residual. Close to the seepage face (x → 0616

PDE residual typically increases. This likely a result o617

noise in the data and rapid changes in free surface heigh618

the seepage face, which are difficult to capture with s619

data points. The case of no PDE misfit, � = 0, gen620

has the highest residual. The residual is less than 10621

most points in the domain for � ≥ 0.1. We note th622

inverted spikes in the residuals are artifacts of the log623

and correspond to points where the sign of the PDE re624

changes.625

To compare the generalization capabilities of the n626

networks, we plot in Figure 8 the testing errors (M627

averaged across 10 different initializations of neura628

work weights and biases in training, as a function629

regularization parameter �. The testing data are gen630

from randomly sampled flow values q ∈ [10−4, 10−3]631

that are not in the training set. The left figure corres632

to the predictions made by PINNs with fixed K whi633

right figure corresponds to predictions made by PINN634

inverted K . Here, we observe that the optimal choi635

the regularization parameter is around � = 0.1 − 1636

the testing errors are below 2 × 10−5. The testing637

of the neural networks trained on the Dupuit and Di638

models are close, indicating that the PINNs models pe639

similarly for data generated by the two different unde640

models.641

In addition to our default setup considered her642

repeat the analysis for testing error in terms of the643

larization parameter, and use different values of noise644

hydraulic conductivity, amounts of training data, and n645

network architectures. The results are provided in su646

mentary figures 5 and 6 for the testing errors using647

and inverted K respectively. The optimal choice of648

larization parameter appears to be consistent across649

variations, remaining relatively unchanged near � = 1650

exceptions to this are the cases with very small noise,651

small values of � can perform well, and very large ne652

sizes, where a much larger value of � is required to p653

overfitting. Overall, scaling the data misfit and PDE654

terms to the same magnitude allows an intuitive sel655

of an optimal � value (namely, � = 1). Moreover,656

optimal � values, the corresponding optimal testing657

are similar in size across the majority of the neural ne658

sizes considered. Thus, the optimal selection of � l659

eliminates the need to tune additional hyperparameters660

as the width and depth of the neural network.661

6.2. Inversion for hydraulic conductivity662

From the synthetic data, we also invert for the hyd663

conductivity, K . This is done by including K as an664

mization variable during the training of the neural net665

To avoid biasing the solution, we initialize K to be666

times that of the ground truth. The inversion resul667

summarized in Table 1 for the range of � ∈ [10−4668

where we report the means and standard deviations669
al.: Preprint submitted to Elsevier Page 8 of 12
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Truth

� = 10−4
� = 10−2
� = 10−1
� = 1
� = 10
� = 102
� = 103

� = 10−4
� = 10−2
� = 10−1
� = 1
� = 10
� = 102
� = 103
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Mean (m/s) Error (%) Std. Dev. (m/s)

2 × 10−3 –

Dupuit model

1.42 × 10−3 29.22 1.77 × 10−4
1.99 × 10−3 0.41 1.87 × 10−5
2.00 × 10−3 0.53 1.94 × 10−5
2.02 × 10−3 1.05 1.90 × 10−5
2.03 × 10−3 1.65 2.57 × 10−5
2.05 × 10−3 2.62 3.01 × 10−5
3.51 × 10−3 75.5 2.04 × 10−3

Di Nucci model

1.70 × 10−3 14.83 1.07 × 10−4
2.00 × 10−3 0.03 2.10 × 10−5
2.01 × 10−3 0.48 3.42 × 10−5
2.03 × 10−3 1.71 1.60 × 10−5
2.05 × 10−3 2.55 1.91 × 10−5
2.06 × 10−3 3.19 2.02 × 10−5
4.07 × 10−3 103.38 2.01 × 10−3

hydraulic conductivity, K, values from synthetic
ta generated from PINNs with Di Nucci equation
Dupuit equation (bottom). Inversion results are
standard deviations (std. dev.) across 10 different
al neural network parameters during training.

initial weights and biases in the training of the
orks.
eral, the inversion yields accurate values of K
e Di Nucci and Dupuit equation based PINNs.
ulated results, with the exception of � = 10−4,
of the inverted K values are on the order of
n likely be attributed to noise in the data. This
onfidence that for the range of � ∈ [10−2, 10]
optimal testing error, we can recover accurate
f K while simultaneously training to predict the
e profiles. Moreover, the PDE misfits are small
throughout the domain for � > 0.1, as shown in
(S.F. S8) and 13 (S.F. S10) for the Dupuit and Di
els, respectively. This allows us to meaningfully
e inverted hydraulic conductivity as a parameter
rlying PDE model.

y-state results using experimental

t train neural networks on the experimental data,
g data from 1 mm and 2 mm beads separately.
m data set, we have flow profiles for 10 different
while for the 2 mm data set we have 12 different
Each flow profile consists of 200 data points.

city, the height of the tail water, ℎl, is set to zero
eriments, but this model can be easily applied
o tail water level. For each bead size, we take
es from six of the flow rates as training data,
remaining datasets as test sets. We train PINNs

using the Di Nucci and Dupuit-Boussinesq equations,698

� = 1 unless otherwise specified, and evaluate the699

misfit using the same locations (xi, qi) as the training700

Theoretical estimates of the hydraulic conductivity ar701

calculated using Cozeny-Karman relation for permea702

(Bear, 1972). We consider both using the fixed theor703

estimates of K as well as inverting for K during tra704

of the PINNs. We also train plain neural networks w705

physics informed regularization as a reference.706

7.1. Flow data prediction707

Examples of predictions by the trained neural netw708

with and without physics informed regularization, are s709

in Figures 14 (also see S.F. 11, 12) and 16 (S.F. 15, 1710

1 mm and 2 mm beads respectively. The plots show th711

and the worst cases among all the flow rates considered712

plots for all other cases are provided in the suppleme713

file. The mean squared error losses for both data (M714

and PDE (MSEf ) while training are at least three o715

of magnitudes less than the original scales (equal to716

indicating that the NN have converged (see Table 2).717

The plain neural networks are able to fit the training718

but tend to perform poorly in testing due to over-fitting719

is particularly noticeable for the 2 mm bead data, whe720

plain neural network suffers from spurious oscillation721

14 and 16). This transcends to the PDE and data m722

in training where the PDE misfit for plain NN is at723

one order of magnitude higher than that from PINN724

Table 2). We also observe that the PINNs trained on D725

and Di Nucci models yield similar predictions to each726

and are almost indistinguishable from each other when727

use the inverted K values. However, the PINNs predi728

using both the Dupuit and Di Nucci models with the729

theoretical K values tend to differ from the testing dat730

the boundaries. In particular, they over-predict the se731

face height for 1mmbeads and significantly underpred732

seepage face height for the 2 mm bead data. The devi733

suggest that the theoretical estimates ofK may be inacc734

Instead, PINNs with invertedK values, yield the best r735

among all the techniques used. Please note that the736

dard Dupuit-Boussinesq model would have estimated737

seepage height, but the information obtained from tra738

data helps maintain a non-zero seepage height for the P739

predictions.740

The corresponding PDE residuals, across the do741

are shown in Figures 15 (also see S.F. 13, 14) and 17742

17, 18) for Dupuit and Di Nucci cases. Unsurprisingl743

PDE residual for the plain neural network is the hi744

close to 1 in regions of the domain, even for the tra745

regimes. In contrast, the PDE residuals are below 0.05 f746

training flow rates and below 0.5 in testing. PINNs th747

trained using the Dupuit and Di Nucci models show s748

PDE residuals. In particular, both cases show rela749

small residuals (< 0.001) across the training data750

using the inverted K values. This suggests that the D751

equation describes the flow behavior sufficiently well w752

the domain, and that the higher-order terms in the Di753
al.: Preprint submitted to Elsevier Page 9 of 12
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Model Type � Width Depth MSEℎ MSEf

1 mm bead size

N/A Plain NN 0 20 4 4.40 × 10−4 9.91 × 10−2
Dupuit Fixed K 1 20 4 1.15 × 10−3 3.66 × 10−4
Di Nucci Fixed K 1 20 4 1.15 × 10−3 3.65 × 10−4
Dupuit Inverted K 1 20 4 5.66 × 10−4 7.22 × 10−6
Di Nucci Inverted K 1 20 4 5.73 × 10−4 8.20 × 10−6

2 mm bead size

N/A Plain NN 0 20 4 1.51 × 10−4 1.64 × 10−1
Dupuit Fixed K 1 20 4 1.84 × 10−3 1.34 × 10−4
Di Nucci Fixed K 1 20 4 2.03 × 10−3 1.83 × 10−4
Dupuit Inverted K 1 20 4 2.71 × 10−4 7.83 × 10−6
Di Nucci Inverted K 1 20 4 2.72 × 10−4 8.02 × 10−6

of hyperparameters along with the training losses for the prediction (fixed K) and inversion tests performed o
al data corresponding to different bead sizes. MSE values correspond to neural networks presented in Figures 14

ve only small effects in the experimental regimes
.
ss our selection of the regularization parameter,
rain PINNs using � ∈ [0, 103]. We focus on the
ing the inverted K values, as they are observed
more accurate predictions. We plot the resulting
rs in Figure 9 as a function of the regularization
�. These are averaged across 10 runs, each with
itial neural network weights and permutations of
d testing data sets. The figure shows predictions
NNs with fixedK for 1 mm on the left and 2 mm
he right. Again, we see that the PINNs based on
erent models produce similar testing errors. We
e that the optimal choice for the regularization
is around � = 1, where the testing errors are below
r 1 mm beads and 6 × 10−4 for 2 mm beads. The
ge of � is similar to that found in our study using
ata, and highlights the benefit of appropriately
data and PDE model.
rsion of Hydraulic Conductivity
o present the inverted values of hydraulic conduc-
or both the 1 mm and 2 mm cases in Table 3.
reports the mean and standard deviations of the
lues across 10 different sets of initial weights,
K during neural network training. The recovered
compare well with their corresponding theoret-

tes computed by the Cozeny-Karman relation. As
ted, the corresponding PDE residuals are on the
−3 for the training data, suggesting that the PDE
ell satisfied by the trained network. This allows
pret the recovered K values as meaningful PDE
. The small deviations in the K values are likely
iscrepancy between the theoretical relationships
erogeneity in packing of the beads of the experi-
p.

Model Mean K (m/s) Std. Dev. K (m/s)

1 mm beads

Calculated 9.10 × 10−3 –
Dupuit 8.30 × 10−3 3.25 × 10−5
Di Nucci 8.30 × 10−3 2.64 × 10−5

2 mm beads

Calculated 2.85 × 10−2 –
Dupuit 3.48 × 10−2 1.24 × 10−4
Di Nucci 3.48 × 10−2 1.09 × 10−4

Table 3
Comparison of inverted and a-priori estimates of hyd
conductivity, K, from experimental data for � = 1. Inv
results are mean and standard deviations (std. dev.)
10 different sets of initial neural network parameters
training.

8. Discussion789

PINNs are able to improve upon the predictions giv790

solving the simplified PDE models alone. Admittedl791

Dupuit-Boussinesq approximation and Di Nucci equ792

do not fully represent the physics in the system. How793

PINNs improve upon the predictions by supplementi794

complete PDE information with experimental training795

without resorting to high-fidelity, computationally e796

sive, multi-dimensional two-phase flow models. Fu797

more, when considering the difficulty in prescribing a798

priate boundary conditions for flows with seepage799

we cannot make predictions directly using the PDEs.800

with the relatively simple Dupuit-Boussinesq equatio801

neglects vertical flow effects, seepage face develop802

and incomplete boundary specifications, we are able803

PINNs to make meaningful predictions regarding ph804

surface height and hydraulic conductivity values mer805

using experimental data. By considering the inform806
al.: Preprint submitted to Elsevier Page 10 of 12
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ata, the seepage face height and even lake-level
an be considered.
ethod of learning flow profiles from experimental
serve that PINNs tend to have greater generaliza-
lities compared to a conventional neural network
ed on limited amounts of training data. The PDE
larization makes it less sensitive to the noise in
elps to prevent overfitting in a physics informed
ritical to this is the choice of regularization pa-
In our formulation, � = 1 naturally represents
etween the data and PDE misfit terms when the
ta and PDE terms are normalized. This appears to
al testing errors across many of our experiments,
hts the benefits of scaling not only the input and
ables in the neural network, but also the PDE in
ormed machine learning. Furthermore, the PDE
larization also reduces the burden of tuning other
eters such as the neural network size.
er, PINN is able to accurately recover hydraulic
ty from the data. The deviations in inverted values
ic conductivity versus the theoretical estimates
to many reasons; a combination of experimental
he empirical nature of the theory. We believe the
lues ofK are more accurate than those calculated.
s a simple, novel way of estimating the hydraulic
ty through in-situ measurements of free surface
opposed to lab-based permeameters tests. As an
to this work, instead of constant permeability, a
bility field K(x) and boundary conditions can be
r separately or jointly.

lusions
paper, we have investigated steady groundwater
Physics Informed Neural Networks. The free
file data comes from analytical results of Dupuit-
and Di Nucci models and moreover, laboratory

ts. PINNs make accurate predictions of the free
files on both training and test data and are less
noise. The conventional neural network gives
and non-physical behavior on the same data set
of physics information.
adopted framework, the regularization parameter
misfit plays the role in balancing the information
ata and the PDE model. The optimal value of
t regularization parameter, selected on the basis
ing generalization error, has been found close
hich performs very well on both synthetic and
tal data. This value bolsters the importance of
data and PDE misfit in order to balance the

information while training the PINNs. Note that
DE represents the physics completely, methods
nted Lagrangian could be used to strongly enforce
ry and initial conditions on the PDE loss (Basir
ak, 2022), eliminating the need for tuning the
ion parameter.

Note that when the PDE represents the physics861

pletely, methods like augmented Lagrangian could be862

to strongly enforce the PDE while eliminating the863

for tuning the regularization parameter. Further, hyd864

conductivity has been inverted for the training data865

gives fairly accurate predictions of free surface profile866

is close to the theoretical estimates. In the future, we867

to extend this PINNs model to study transient ground868

flow dynamics.869

Data availability870

All related codes are available on Github: htt871

github.com/dc-luo/seepagePINN (Shadab, Luo, Shen,872

and Hesse, 2021). Additionally, we have developed a s873

toolbox that can be used to investigate steady ground874

flow dynamics. A manual is provided in the Github r875

tory.876
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Figure 17: The PDE residuals inside the domain correspo
to free surface profile predictions for 2 mm bead size,
in Figure 16.
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