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A B S T R A C T

Richards equation is often used to represent two-phase fluid flow in an unsaturated porous medium when
one phase is much heavier and more viscous than the other. However, it cannot describe the fully saturated
flow for some capillary functions without specialized treatment due to degeneracy in the capillary pressure
term. Mathematically, gravity-dominated variably saturated flows are interesting because their governing
partial differential equation switches from hyperbolic in the unsaturated region to elliptic in the saturated
region. Moreover, the presence of wetting fronts introduces strong spatial gradients often leading to numerical
instability. In this work, we develop a robust, multidimensional mathematical model and implement a well-
known efficient and conservative numerical method for such variably saturated flow in the limit of negligible
capillary forces. The elliptic problem in saturated regions is integrated efficiently into our framework by
solving a reduced system corresponding only to the saturated cells using fixed head boundary conditions in the
unsaturated cells. In summary, this coupled hyperbolic–elliptic PDE framework provides an efficient, physics-
based extension of the hyperbolic Richards equation to simulate fully saturated regions. Finally, we provide
a suite of easy-to-implement yet challenging benchmark test problems involving saturated flows in one and
two dimensions. These simple problems, accompanied by their corresponding analytical solutions, can prove
to be pivotal for the code verification, model validation (V&V) and performance comparison of simulators for
variably saturated flow. Our numerical solutions show an excellent comparison with the analytical results for
the proposed problems. The last test problem on two-dimensional infiltration in a stratified, heterogeneous
soil shows the formation and evolution of multiple disconnected saturated regions.
1. Introduction

Richardson–Richards equation (Richardson, 1922; Richards, 1931),
popularly known as Richards equation, describes the flow of water in an
unsaturated porous medium due to gravity and capillary forces. It plays
a crucial role in soil hydrology, agriculture, environment and waste
management (Farthing and Ogden, 2017). More recently, it has been
implemented to study the meltwater percolation in glacier firn (porous,
sintered and compacted snow) (Colbeck, 1972; Meyer and Hewitt,
2017). Richards equation can be derived from the standard formulation
of two-phase flow in porous media when there is a large contrast in
the viscosity and density (mobility) of the two phases (Szymkiewicz
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and Szymkiewicz, 2013; Lie, 2019). The large contrast in mobility
leads to very high speeds of lighter, less viscous gas phase compared
to heavier, more viscous water phase (Barenblatt et al., 1984). Thus,
in the full two-phase flow model for a gas–water system the fast gas
fronts become very restrictive for an explicit time integration due to
the CFL condition. To avoid this, the contrast in mobilities is utilized
for model simplification by neglecting the motion of the lighter phase
via omitting the pressure gradient required to drive it. This results in
Richards equation that captures the motion of the heavier, more viscous
phase (water).
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Mathematically Richards equation is a nonlinear, parabolic partial
differential equation. It transitions from parabolic to degenerate elliptic
as the (sub-)domain nears complete saturation (List and Radu, 2016).
More specifically, the solution depends on two highly nonlinear soil
water constitutive functions which depend on water saturation (𝑠𝑤), the
ydraulic conductivity, 𝐾(𝑠𝑤), and the capillary suction head, 𝛹 (𝑠𝑤),
here the latter approaches zero rapidly in the near saturation limit
𝑠𝑤 → 1 − 𝑠𝑔𝑟 with 𝑠𝑔𝑟 being the residual gas saturation). Therefore it
eads to an unbounded capillary suction head derivative term when the
edium becomes saturated leading to a degeneracy, i.e., |d𝛹∕d𝑠𝑤| →
as 𝑠𝑤 → 1 − 𝑠𝑔𝑟 (Farthing and Ogden, 2017). Furthermore, the

nfiltration into dry soils or simulations with large spatial scales of-
en leads to the formation of wetting fronts (shock waves) causing
xtremely sharp gradients of soil hydraulic properties such as hydraulic
onductivity and capillary suction head, leading to instability of the
umerical solvers (Farthing and Ogden, 2017; Zha et al., 2019). At
maller spatial scales, the term involving second-order derivative of
apillary suction leads to diffusion of the wetting front and thus helps
tabilize the numerical model. In summary, these nonlinearities and the
egeneracy make the design and analysis of numerical schemes for the
ichards equation very difficult (Miller et al., 2013).

Nonetheless, Richards equation has been extensively used in the
ield of hydrology (Touma and Vauclin, 1986; Farthing and Ogden,
017), because variably saturated flows are the crucial link between
urface water and groundwater. There are primarily three approaches
o overcome the difficulties associated with simulating variably satu-
ated flows using Richards equation (Zha et al., 2019). The first is to
se the head-based form of Richards equation where the dependent
ariable is the hydraulic head, ℎ, so that the derivative of capillary
uction head, 𝛹 , with respect to saturation can be avoided (Gillham
t al., 1976; Celia et al., 1990; Zadeh, 2011; Farthing and Ogden, 2017;
ha et al., 2019). But the computationally-expensive head-based forms
ntroduce mass balance errors in the numerical model (Celia et al.,
990) and are more susceptible to numerical instability (Zha et al.,
019). The second alternative is to modify the water retention curve
o that its slope in the limit of complete saturation remains finite,
.e., d𝛹∕d𝑠𝑤 > −∞ when 𝑠𝑤 → 1 − 𝑠𝑔𝑟 (Clapp and Hornberger, 1978;
ogel et al., 2000; Keita et al., 2021). The third approach is called

he primary variable switching technique (Zeng et al., 2018) where
he primary variable in the Richards equation is switched from water
aturation to head depending on the cell saturation. However, this
on-smooth transition between the two primary variables potentially
roduces unphysical solutions (Zha et al., 2019). Also, these switch-
ng techniques (Zadeh, 2011; Zeng et al., 2018) are restricted to the
xpensive Newton–Raphson iterations (Zha et al., 2019). Additionally,
e et al. (2015) only utilizes the mixed form in one dimension as the

ime derivative of the saturation term in Richards’ equation numerically
onverges to zero at complete saturation. In summary, the solution
f Richards equation remains challenging, in particular in variably
aturated flows and with strong capillary gradients.

Motivated by large-scale applications and gravity-dominated flows,
here these challenges are particularly prominent, we introduce a
ifferent approach to model variably saturated flow. In these situations,
he flow is driven by gravity and the capillary gradients are very sharp
o that they cannot be resolved in field-scale applications. We therefore
onsider Richards equation in the limit of negligible capillary forces to
btain a description of wetting fronts and the groundwater table. This
eads to a mathematically interesting set of governing equations that
re hyperbolic in the unsaturated region and elliptic in the saturated
egion. Recently, similar approaches for treating the saturated region
ave been developed by Meyer and Hewitt (2017) and Dai et al.
2019) for the full Richards equation with capillary effects. Dai et al.
2019) have shown their approach to be more robust than Richards
quation based Hydrus-1D simulations (Šimunek et al., 2012), under
2

onditions where a saturated region forms. However, both approaches
are limited to one-dimension, where the saturated region can be in-
tegrated analytically. Shadab and Hesse (2022) developed a model
for gravity dominated flow with the formation of saturated regions
in the limit of no capillary forces and provide analytic solutions for
one-dimensional infiltration problems. Here we extend their model to
multiple dimensions and develop a conservative numerical method that
naturally captures the interactions of multiple saturated domains.

In addition to the models, ‘‘there is also a need of benchmark
test problems to facilitate consistent advances and avoid reinventing
of the wheel’’, according to Farthing and Ogden (2017). There are
several specialized benchmark problems proposed in the integrated
hydrologic model comparison project (Kollet et al., 2017) and by the
International Soil Modeling Consortium (https://soil-modeling.org/)
(Vereecken et al., 2016; Baatz et al., 2019). These benchmarks consider
complex scenarios aimed at testing fully developed simulators. Here we
offer an additional set of relatively simple tests that focus solely on the
interaction of saturated and unsaturated regions. All cases have semi-
analytic solutions and/or allow direct comparison with experimental
data for code verification and model validation.

It is noted that extensive theoretical and numerical studies in
the field of emerging computational geosciences (Zhao et al., 2009)
have demonstrated that physical and chemical dissolution reactions in
porous media can cause variations of porosity, so that groundwater
flow is fully coupled with physical and chemical dissolution reactions,
porosity evolution and mass transport processes (Zhao et al., 2008,
2010a). In particular, the process of a mineral dissolution reaction
is affected by the following factors such as the mineral dissolution
ratio (Zhao et al., 2010b), mineral surface shape (Zhao et al., 2008),
solute dispersion (Zhao et al., 2010a), porous medium compressibil-
ity (Zhao and Zhao, 2014), porous medium anisotropy (Zhao et al.,
2013a), and non-isothermal influence (Colbeck, 1972; Shadab et al.,
2024b,a; Zhao et al., 2015). More importantly, due to the full coupling
of groundwater flow with the above-mentioned three main processes,
the porosity and related physical parameters are no longer constant
in realistic flow systems (Zhao et al., 2013b). Therefore, physical and
chemical dissolution reactions should be considered to reflect this
reality (Zhao et al., 2017, 2020). However, below we focus on the
variably saturated flow in the limit of negligible capillary forces.

In this paper we propose a multidimensional, physics-based ex-
tension to the Richards model to solve variably saturated flow while
neglecting capillary forces. Section 2 introduces the theoretical frame-
work that extends the hyperbolic Richards equation model for unsat-
urated flow to the case of complete saturation. Section 3 presents the
numerical model along with the proposed hyperbolic–elliptic PDE solu-
tion algorithm. The proposed solver robustly and efficiently simulates
variably saturated flow with sharp gradients and fully saturated elliptic
region(s) where other Richards equation based simulators may fail.
Section 4 documents a suite of 1D and 2D benchmark test problems
with known analytical solutions and the validation of our numerical
model against it. Section 5 concludes the present work.

2. Model formulation

2.1. Full two-phase fluid flow model

Consider a system of two incompressible fluid phases, water and
gas, in a non-deforming, stationary and porous medium with porosity
𝜙 (-) and permeability k (m2). Both of these fields (𝜙, 𝑘) can thus vary
in space but are time invariant. The transport equations for these two
phases can be written as

𝜙 𝜕
𝜕𝑡
(𝜌𝑤𝑠𝑤) + ∇ ⋅ (𝜌𝑤𝐪𝑤) = 0 ∀𝐱 ∈ 𝛺∖𝜕𝛺, 𝑡 ∈ (0, 𝑇 ], (1)

𝜙 𝜕
𝜕𝑡
(𝜌𝑔𝑠𝑔) + ∇ ⋅ (𝜌𝑔𝐪𝑔) = 0 ∀𝐱 ∈ 𝛺∖𝜕𝛺, 𝑡 ∈ (0, 𝑇 ], (2)

where subscripts 𝑤 and 𝑔 refer to the variables corresponding to water
and gas phases respectively. The saturation (-), density (kg/m3) and

https://soil-modeling.org/
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Fig. 1. A schematic diagram illustrating an example of a variably saturated flow
inside a domain 𝛺 with boundary 𝜕𝛺 illustrated with solid blue line. The otherwise
unsaturated domain (white region) has three fully saturated subdomains (shaded
region) constituting 𝛺𝑠 ≡ 𝛺𝑠1 ∪ 𝛺𝑠2 ∪ 𝛺𝑠3 . Also, for the 𝑘th saturated subdomain
(𝑘 ∈ {1, 2, 3}), 𝐧̂𝑘 is the outward normal vector to the corresponding saturated–
unsaturated region boundary 𝜕𝛺𝑠𝑘 and 𝐪𝑠𝑘 is the spatially varying volumetric flux of
water phase, at a specific location.

volumetric flux vector (m3/(m2 s)) of phase 𝛼 ∈ {𝑤, 𝑔} are given by
𝑠𝛼 , 𝜌𝛼 and 𝐪𝛼 , respectively. Moreover, 𝛺 is the spatial domain with
boundary 𝜕𝛺 (see Fig. 1 for example), 𝐱 ≡ (𝑥, 𝑦, 𝑧)𝑇 is the spatial
coordinate vector (m), 𝑡 is the time variable (s) and 𝑇 is the final time
(s). The backslash symbol (∖) denotes the set exclusion. For example,
𝐴∖𝐵 means elements of set 𝐴 which are not present in set 𝐵. Eqs. (1)
and (2) can be combined to yield the two-phase continuity equation

∇ ⋅ (𝐪𝑤 + 𝐪𝑔) = 0 ∀𝐱 ∈ 𝛺. (3)

The volumetric flux of each phase is given by an extension to Darcy’s
law as

𝐪𝛼 = −
k𝑘𝑟𝛼
𝜇𝛼

(∇𝑝𝛼 − 𝜌𝛼𝐠), 𝛼 ∈ {𝑤, 𝑔}, (4)

where for each fluid phase, 𝑘𝑟𝛼 is the relative permeability (-), 𝑝𝛼
is the pressure (Pa) and 𝜇𝛼 is the dynamic viscosity (Pa s). Relative
permeabilities, 𝑘𝑟𝛼 , are function of water saturation, 𝑠𝑤 (Wyckoff and
Botset, 1936). The absolute permeability of the porous medium (m2),
given by k, is a function of the porosity, 𝜙. The symbol 𝐠 represents the
acceleration due to gravity vector (m/s2) where 𝐠 = 𝑔𝐠̂ with 𝐠̂ being the
unit vector in the direction of gravity (see Fig. 1).

The system of equations is closed by the constitutive relation for
capillary pressure, 𝑝𝑐 , as

𝑝𝑐 (𝑠𝑤) = 𝑝𝑔 − 𝑝𝑤, (5)

which relates the two phase pressures and is typically assumed to be
a function of saturation only (Leverett, 1941; Brooks and Corey, 1964;
van Genuchten, 1980). The constitutive functions for multi-phase flow,
𝑘𝑟𝛼 and 𝑝𝑐 , display complex hysteresis (Blunt, 2017), but here we only
consider the simplest case where each phase becomes immobile below a
certain residual saturation, 𝑠𝛼𝑟. So that the two-phase flow is restricted
to regions where 𝑠𝑤𝑟 < 𝑠𝑤 < 1 − 𝑠𝑔𝑟. In this paper we refer to regions
with 𝑠𝑤 = 1 − 𝑠𝑔𝑟 as saturated, although immobile gas bubbles are still
present. In the next section we transition to the Richards limit and
build a connection with full two-phase flow formulation which will
pave way for a physics-based model to simulate variably saturated flow
with negligible capillary effects.

2.2. Modification of richards equation for variably saturated flow with
negligible capillary effects

For rainwater infiltration into soil both density and viscosity of gas
are much smaller than that of water, i.e., 𝜌𝑔 ≪ 𝜌𝑤 and 𝜇𝑔 ≪ 𝜇𝑤. In
this limit, the gas responds essentially instantaneously and its pressure
3

a

can be assumed a constant, so that only the flow of the water phase is
considered. In this limit, the full two-phase flow Eqs. (1)–(5) reduce
to Richards equation (Richards, 1931), as discussed in Szymkiewicz
and Szymkiewicz (2013) and Lie (2019). The saturation form of the
Richards equation is given by

𝜙
𝜕𝑠𝑤
𝜕𝑡

+ ∇ ⋅
[

𝐾(𝑠𝑤)
(

∇𝛹 (𝑠𝑤) + 𝐠̂
)]

= 0 ∀𝐱 ∈ 𝛺∖𝜕𝛺, 𝑡 ∈ (0, 𝑇 ], (6)

where 𝐾(𝑠𝑤) = k𝑘𝑟𝑤(𝑠𝑤)𝜌𝑤𝑔∕𝜇𝑤 is the saturation-dependent hydraulic
onductivity (m/s), 𝛹 (𝑠𝑤) = 𝑝𝑐 (𝑠𝑤)∕(𝜌𝑤𝑔) is the capillary suction
ead (m). The capillary effects can be neglected in the limit when
∇𝛹 | ≪ 1 (Smith, 1983) which is a good approximation for flow in
ight textured soils such as sand (Brustkern and Morel-Seytoux, 1970;
orel-Seytoux and Khanji, 1974; Smith et al., 2002) or for hydrological

roblems with large spatial scales (see Shadab and Hesse (2022), Smith
1983)). In Shadab and Hesse (2022) we present a detailed analysis
f the effect of neglecting capillary suction in typical soil infiltration
xperiments. This simplification leads to a gravity-driven unsaturated
low governed by
𝜕𝑠𝑤
𝜕𝑡

+ ∇ ⋅𝐾(𝑠𝑤)𝐠̂ = 0, ∀𝐱 ∈ 𝛺∖𝜕𝛺, 𝑡 ∈ (0, 𝑇 ]. (7)

This limit is commonly known as the kinematic wave approximation
in the infiltration community (Charbeneau, 1984; Te Chow, 2010;
Shadab and Hesse, 2022). However, for generality we refer to it as
the hyperbolic Richards equation in this paper, due to the presence of
only the gravity-driven advective flux term. Eq. (7) is naturally one-
dimensional, if gravity is aligned with a coordinate direction. Even in
a multi-dimensional and heterogeneous medium any unsaturated front,
modeled through (7), will migrate strictly in the direction of gravity, 𝐠̂.

his changes when the medium saturates locally and pressure gradients
ouple the flow in all directions across the saturated region. Since gas
hase is immobile in a saturated region (𝐪𝑔 = 𝟎), Eqs. (3) and (4) limit
o the elliptic equation for incompressible saturated flow

− ∇ ⋅ (𝐾∇ℎ) = 0 ∀𝐱 ∈ 𝛺𝑠(𝑡)∖𝜕𝛺𝑠(𝑡), (8)

here ℎ = 𝑝𝑤∕(𝜌𝑤𝑔) − ∫ 𝐱
0 𝐠̂ ⋅ d𝐱 is the hydraulic head (m). We have

sed 𝐾 to refer to the saturated hydraulic conductivity, which is strictly
(1 − 𝑠𝑔𝑟). Solving variably saturated flow problems in the gravity-
riven limit requires a dynamic coupling between the hyperbolic PDE
7) for unsaturated regions with elliptic PDE (8) for saturated regions.
lthough the elliptic PDE (8) itself is not time dependent, the satu-
ated domain, 𝛺𝑠(𝑡), changes with time due to its interaction with the
nsaturated region. We refer to the interface between the saturated
nd unsaturated regions simply as the interface and denote it as 𝜕𝛺𝑠(𝑡)
hich may evolve with time. There can be multiple saturated regions

hat can dynamically form and evolve and can interact with each other
see Fig. 1).

Since the pressure in the unsaturated region is always determined
y the gas phase and hence zero (Szymkiewicz and Szymkiewicz, 2013;
ie, 2019; Shadab and Hesse, 2022), the hydraulic head boundary
ondition along the interface is simply

= −∫

𝐱

𝟎
𝐠̂ ⋅ d𝐱 on 𝐱 ∈ 𝜕𝛺𝑠(𝑡), (9)

here 𝟎 is the location vector of the origin, (0, 0, 0)𝑇 . The multidimen-
ional velocity of the interface, 𝐯𝜕𝛺𝑠

, can be determined by the discrete
ass balance of water (1) across the interface as

𝜕𝛺𝑠
=

(𝐪𝑢 − 𝐪𝑠) ⋅ 𝐧̂
𝜙𝑢𝑠𝑤,𝑢 − 𝜙𝑠(1 − 𝑠𝑔𝑟)

𝐧̂, (10)

here 𝐧̂ is the outward unit normal of the interface, 𝐪𝑢 and 𝐪𝑠 are
the unsaturated and saturated fluxes along the interface (see Fig. 1
for example). Additionally, 𝜙𝑢𝑠𝑤,𝑢 = 𝜃𝑢 and 𝜙𝑠(1 − 𝑠𝑔𝑟) = 𝜃𝑠 are the

ater volume fractions (soil moisture contents) on the unsaturated and
aturated sides of the interface. The saturated domain, 𝜕𝛺𝑠, evolves

ccording to this interface velocity.
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Due to the absence of the capillary term, which is singular in the sat-
urated region, we can evolve the water saturation in both saturated and
unsaturated domains. As such, we are simply evolving the water mass
balance (1), but evaluate the fluxes differently in the saturated and
unsaturated regions. This avoids the explicit tracking of the interfaces
and the mathematical model can be summarized as

𝜙
𝜕𝑠𝑤
𝜕𝑡

+ ∇ ⋅ q𝑤 = 0 ∀x ∈ 𝛺∖𝜕𝛺, 𝑡 ∈ (0, 𝑇 ] (11)

with q𝑤(𝑠𝑤) =
⎧

⎪

⎨

⎪

⎩

q𝑢 = 𝐾(𝑠𝑤)ĝ ∀x ∈ 𝛺∖𝛺𝑠 where 𝑠𝑤 < 1 − 𝑠𝑔𝑟
q𝑠 = −𝐾∇ℎ ∀x ∈ 𝛺𝑠 where 𝑠𝑤 = 1 − 𝑠𝑔𝑟

and

(12)

−∇ ⋅ (𝐾∇ℎ) = 0 ∀x ∈ 𝛺𝑠(𝑡)∖𝜕𝛺𝑠(𝑡), (13)

subject to ℎ = −∫

x

0
ĝ ⋅ dx ∀𝐱 ∈ 𝜕𝛺𝑠(𝑡). (14)

This hyperbolic–elliptic mathematical model (11)–(14) for variably-
aturated flow in the limit of negligible capillary forces, requires the
ynamic coupling of hyperbolic and elliptic subdomains with evolving
nterfaces. Below we develop a numerical algorithm that addresses the
yperbolic–elliptic nature of this model.

. Numerical model and algorithm

.1. Discretization and operator approach

The governing equation is solved with conservative finite differ-
nce discretization on a regular Cartesian grid (LeVeque, 1992) with
otal number of 𝑁 cells and 𝑁𝑓 faces. A staggered grid approach is
sed to avoid the checkerboard problem which leads to approximating
he saturations and heads at the cell centers but fluid fluxes at cell
aces (Ismail-Zadeh and Tackley, 2010). This formulation leads to
econd-order central differencing scheme in space. The tensor prod-
ct grid enables a straightforward extension to multidimensions from
ne-dimension (1D). Here we briefly discuss the construction of two-
imensional (2D) operators from one-dimensional operators in the
ain text. See Appendix A for the definition of one-dimensional op-

rators and Appendix B for constructing operators in three-dimensions.
Gradient, divergence and mean operators. We use a regular Cartesian

esh with 𝑛 cells of size 𝛥𝑥 in 𝑥 direction and 𝑚 cells of size 𝛥𝑧 in
direction. The two-dimensional discrete divergence operator, 𝐃 ∈

R𝑁×𝑁𝑓 , discrete gradient operator, 𝐆 ∈ R𝑁𝑓×𝑁 , and discrete mean
operator, 𝐌 ∈ R𝑁𝑓×𝑁 , are composed of two block matrices as

𝐇 =
[

𝐇𝑥
𝐇𝑧

]

𝑁𝑓 × 𝑁
where 𝐇 ∈ {𝐃𝑇 , 𝐆 , 𝐌}, (15)

where R𝑘 refers to the 𝑘 tuples of the real numbers. The matrices 𝐇𝑥
nd 𝐇𝑧 are the 𝑁𝑓𝑥 by 𝑁 and 𝑁𝑓𝑧 by 𝑁 discrete operators in 𝑥 and
directions respectively. In two-dimensions, 𝑁𝑓 is the total number

f faces which is the summation of 𝑥 and 𝑧 normal faces, i.e., 𝑁𝑓 =
𝑁𝑓𝑥 + 𝑁𝑓𝑧 where 𝑁𝑓𝑥 = (𝑛 + 1)𝑚 and 𝑁𝑓𝑧 = 𝑛(𝑚 + 1). The total
number of cells is 𝑁 = 𝑚𝑛. See Fig. 2 as an example of a simple
iscretized domain with grid parameters given in the caption. Note
hat gradient and mean operators (𝐆 and 𝐌 respectively) linearly map

the cell centered variables to the corresponding cell faces whereas the
divergence operator (𝐃) does the opposite. Their corresponding block
matrices, defined in Eq. (15), are obtained from the one-dimensional
discrete operators using the Kronecker products

𝐇𝑥 = 𝐇𝑛⊗𝐈𝑚 and 𝐇𝑧 = 𝐈𝑛⊗𝐇𝑚, where the discrete operator 𝐇 ∈ {𝐃 , 𝐆 , 𝐌}

(16)

and 𝐈𝑘 is the 𝑘 by 𝑘 identity matrix. In this case, the sequence is chosen
o respect the internal ordering of Matlab, where the cells and faces
4

m

are ordered in 𝑧 direction first, then in 𝑥 direction. The one-dimensional
discrete operators 𝐃𝛼 , 𝐆𝛼 and 𝐌𝛼 are given in Appendix A by Eqs. (32)–
33) with 𝛼 = 𝑛 and cell size 𝛥𝑥 for 𝑥 direction, and 𝛼 = 𝑚 and cell size
𝑧 for 𝑧 direction.

Advection operator. For solving the saturation Eq. (11) the advective
lux, given by 𝐪𝑤 in Eq. (12), is computed which requires the value
f saturation (or soil moisture content) at the cell faces to evaluate the
ydraulic conductivity. For that purpose, we use Darcy flux-based first-
rder upwinding to compute the saturation at the cell faces (Godunov
nd Bohachevsky, 1959). In matrix form, we construct an advection
atrix operator, 𝐀(𝐪𝑤) ∈ R𝑁𝑓×𝑁 , which takes in the 𝑁𝑓 by 1 Darcy flux

ector, 𝐪𝑤 = [𝑞1, 𝑞2,… , 𝑞𝑁𝑓−1, 𝑞𝑁𝑓
]𝑇 , at the cell faces. The advection

perator 𝐀 can be expressed in two dimensions as

= 𝐐+𝐀+ + 𝐐−𝐀− with 𝐐± =

[

𝐐±
𝑥

𝐐±
𝑧

]

𝑁𝑓 × 𝑁𝑓

and 𝐀± =

[

𝐀±
𝑥

𝐀±
𝑧

]

𝑁𝑓 × 𝑁

.

(17)

ere 𝐐±
𝑥 is the 𝑁𝑓𝑥 by 𝑁𝑓𝑥 diagonal matrix with the positive or nega-

ive Darcy fluxes across the 𝑥 faces along the diagonal. Similarly 𝐐±
𝑧 is

he 𝑁𝑓𝑧 by 𝑁𝑓𝑧 diagonal matrix with 𝑧 face positive or negative Darcy
luxes in the diagonal. Moreover, the 𝑥 and 𝑧 matrix components of
+ and 𝐀− are expressed similar to the 2D discrete operators discussed

n Eq. (15) as
±
𝑥 = 𝐀±

𝑛 ⊗ 𝐈𝑚 and 𝐀±
𝑧 = 𝐈𝑛 ⊗ 𝐀±

𝑚, (18)

here 𝐀±
𝑛 and 𝐀±

𝑚 are the one-dimensional operators, given by Eq. (35)
n Appendix A. In a similar fashion, this framework can be extended
aturally to three-dimensions as described in Appendix B.

Laplacian operator. In this framework, the discrete Laplacian is
imply given by 𝐋 = 𝐃𝐆, but here the discretization of the spatially
ariable hydraulic conductivity has to be considered. The hydraulic
onductivity, 𝐾(𝑠𝑤), is approximated at cell centers and is therefore
iscretized as a 𝑁 by 1 vector 𝑲 . The flux computation requires
onductivities on the cell faces. Therefore 𝑲 is harmonically averaged
rom cell centers to the faces. The 𝑁𝑓 by 1 vector of averaged con-
uctivities is given by 𝑲𝑚 = (𝐌𝑲−1)−1, where the algebraic mean
perator, 𝐌, is used and the inverse refers to element wise reciprocal
f the corresponding vector. The resulting vector 𝑲𝑚 is stored as the
𝑓 by 𝑁𝑓 diagonal matrix K. The final spatial discretization of the
eterogeneous Laplacian, 𝐋, in Eq. (13) is then given by

∇ ⋅𝐾(𝑠𝑤)∇ ≈ 𝐋 = −𝐃 𝐊 𝐆. (19)

o that for example, the elliptic Eq. (13) in the saturated region can be
ritten in discrete form as

− ∇ ⋅ (𝐾∇ℎ) = 0 ≈ 𝐋 𝐡 = 𝐟𝑠 (20)

here 𝐡 and 𝐟𝑠 are 𝑁 by 1 vectors of discrete unknown heads, ℎ(𝐱), and
nown source terms, 𝑓𝑠(𝐱), at cell centers. For the problems considered
n Section 4 there is no source term, so that 𝐟𝑠 = 𝟎.

The numerical method introduced in this section is discretely con-
ervative in the way defined by LeVeque (2002), because the finite
ifference discretization of the conservative form of the governing
quations is equivalent to a finite volume method on a tensor product
esh (Aziz and Settari, 1979). This ensures that jumps in saturation

bey the Rankine–Hugoniot condition and that the discrete solution is
weak solution to Eq. (11) (Lax and Wendroff, 1960).

.2. Boundary conditions

Boundary conditions are required so that the PDE-based problem be-
omes well posed. Natural boundary conditions (zero gradient) are di-
ectly implemented in the 1D discrete gradient operator (Appendix A).
ere we briefly summarize the implementation of other boundary
onditions, for more details see Appendix C. Non-homogeneous Neu-

ann boundary conditions are applied by conversion of fluxes at the
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boundary into an equivalent extra source term in the corresponding
boundary cells. For homogeneous Dirichlet boundary conditions, the
number of unknowns is reduced in accordance with the 𝑁𝑐 number
of constraints provided by the prescribed heads or saturations in the
boundary cells. The constraints are eliminated by orthogonally project-
ing the solution vector, 𝐡 ∈ R𝑁 , onto the null space of the constraints,
 ∈ R(𝑁−𝑁𝑐 ) (Trefethen and Bau, 1997), and solving the resulting
reduced system. For heterogeneous Dirichlet boundary conditions, the
(quasi-)linearity of the problem allows splitting of the solution into
homogeneous and particular solutions (Greenberg, 2013), followed by
constraint elimination using the same orthogonal projection.

3.3. Time marching

First-order, explicit Euler time integration is used to update the
saturation Eq. (11). Since this temporal discretization along with first-
order upwind scheme is conditionally stable (Hoffman and Frankel,
2018), the CFL criteria is used. The time step 𝛥𝑡 is evaluated from the
minimum time among fastest filling of a cell and the CFL condition
tracking the motion of fastest characteristic as

𝛥𝑡 = min
𝛥𝑡∈(0,∞)

{

min
𝛥𝑡∈(0,∞), 𝐱∈𝛺

|𝜙(𝐱)(1 − 𝑠𝑔𝑟 − 𝑠𝑤(𝐱))|
∇ ⋅ 𝐪

, 𝑛CFL ×
min{𝛥𝑥, 𝛥𝑧}
max𝐱∈𝛺 𝜆(𝐱)

}

.

(21)

Here 𝜆 is the speed of the characteristic at a location 𝐱 defined as
|d𝐪𝑢(𝐱)∕d(𝜙𝑠𝑤)| and 𝑛CFL is the CFL number, 𝑛CFL ∈ (0, 1]. The minimum
time step evaluation requires a vectorized computation of Eq. (21) over
the discretized domain. The first term inside curly braces in Eq. (21)
corresponds to fastest fill time for cells along the saturated–unsaturated
interface, which is typically the smallest time step when the domain
contains a saturated region. Hence, the second term is redundant for
the benchmark problems considered in Section 4.

3.4. Hyperbolic–elliptic PDE solver algorithm

The proposed method aims to efficiently combine the simplicity of
solving a single hyperbolic PDE for unsaturated flow with an additional,
domain-specific elliptic PDE to capture the formation and evolution of
fully-saturated regions (Fig. 2a–2c). At the 𝑖th time step the discretized
saturation Eq. (11) takes the following form

𝜱
𝐬𝑖+1𝑤 − 𝐬𝑖𝑤

𝛥𝑡𝑖
+ 𝐃 𝐪𝑖𝑤 = 𝟎, (22)

where the superscripts denote the quantity at the corresponding time
step. The symbol 𝜱 refers to 𝑁 by 𝑁 diagonal matrix with the known
porosities of the cells as the diagonal entries, 𝐬𝑤 refers to the 𝑁 by 1
vector of discretized water saturations at cell centers and 𝐪𝑤 is the 𝑁𝑓
by 1 vector of the face-normal volumetric water fluxes evaluated at cell
faces. This equation updates the water saturation vector, 𝐬𝑤, to the next
time step (𝑖 + 1).

In the unsaturated region, governed by hyperbolic Richards Eq. (7),
the discretized flux 𝐪𝑖𝑤 can be simply evaluated at the cell faces by
gravitational component of the Darcy flux Eq. (12) as 𝐪𝑢 = 𝐊 𝐀(𝐠̂)𝐤𝑟(𝐬𝑖𝑤)
where 𝐤𝑟 is the 𝑁 by 1 vector of normalized relative permeabilities,
defined as 𝐤𝑟 = 𝑘𝑟𝑤(𝐬𝑖𝑤)∕𝑘

0
𝑟𝑤, at cell centers. The saturated hydraulic

conductivity matrix, 𝐊, is evaluated from the harmonic mean of the cell
centered hydraulic conductivity vector, 𝑲, whereas the 𝑁 by 1 relative
permeability vector, 𝐤𝑟, is upwinded in the direction of gravity using
the advection operator, 𝐀(𝐠̂) (see Section 3.1). Here 𝐠̂ is the 𝑁𝑓 by 1 unit
vector in the direction of gravity defined on the cell faces. If gravity is
aligned with a coordinate direction then 𝐠̂ is zero on faces with normals
pointing in the other coordinate directions.

Next the saturated subdomains comprising 𝛺𝑠 are identified by
selecting cells with saturations above a critical threshold, 𝑠𝑤,𝑇 . For
example, Figs. 2d–2f show such cells with red circles at their centers.
5

Fig. 2. Gravity-dominated drainage of multiple saturated drops across an otherwise
unsaturated (𝑠𝑤 = 10%) porous reservoir demonstrating the hyperbolic–elliptic PDE
solution algorithm. The saturation contours are shown at dimensionless times 𝑡′ = (a)
0, (b) 0.025 and (c) 0.05. Their corresponding dynamically evolving saturated and
unsaturated cells as well as faces are respectively shown in subfigures (d), (e) and
(f). The gravity aligns with +𝑧 direction, i.e., 𝐠̂ = (0, 0, 1)𝑇 . The unit square domain is
divided uniformly into 25 × 25 cells. Here the number of cells in 𝑧 and 𝑥 directions are
𝑚 = 25 and 𝑛 = 25 respectively and the total number of cells is 𝑁 = 𝑛𝑚 = 25×25 = 625.
The number of faces with normals in 𝑧 direction are 𝑁𝑓𝑧 = 𝑛(𝑚 + 1) = 25 × 26 = 650
and in 𝑥 direction are 𝑁𝑓𝑥 = (𝑛 + 1)𝑚 = 650. The total number of cell faces are
𝑁𝑓 = 𝑁𝑓𝑥 +𝑁𝑓𝑧 = 1300.

Note that the saturation threshold 𝑠𝑤,𝑇 needs to kept as close to unity
as possible as it may otherwise alter the velocity of front propagation,
but keeping it very close to unity can lead to very fast-moving interface
as the saturation jump in Eq. (10) becomes very small, thus restricting
the time step. The degrees of freedom of faces corresponding to these
saturated cells can be found using the discrete divergence operator. In
case any subdomain(s) saturates completely the flux in the saturated
region(s), 𝐪𝑠, is then evaluated by solving the elliptic problem (13)
subject to Dirichlet boundary conditions (14). Here we set the heads in
all unsaturated cells and eliminate them using the projection approach
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discussed in Section 3.2. This approach leads to a reduced system of
equations corresponding only to the saturated cells (red circles) and
hence efficiently and automatically deals with multiple, disconnected
saturated regions.

For saturated cells on the domain boundary 𝜕𝛺𝑠 ∩ 𝜕𝛺, shown by
reen lines in Figs. 2d–2f, the boundary condition specified on the
xternal boundary must be applied. No flow boundary conditions are
aturally implemented in the discrete gradient operator and therefore
equire no modification. For outflow boundary conditions the heads in
he corresponding cells must be set to ℎ = − ∫ 𝐱

𝟎 𝐠̂ ⋅ d𝐱.
Once the head is evaluated, the flux at the faces inside the saturated

egion (thin red lines) is evaluated using Darcy’s law (12), i.e., 𝐪𝑠 =
𝐾∇ℎ. The fluxes on the cell faces corresponding to the saturated–
nsaturated boundary, 𝜕𝛺𝑠 shown as a thick red line in Fig. 2, are
pwinded according to the interface velocity (10) as

𝑤, 𝐱∈𝜕𝛺𝑠
=

{

q𝑠, 𝐯𝐱∈𝜕𝛺𝑠
⋅ 𝐧̂ ≥ 0,

q𝑢, 𝐯𝐱∈𝜕𝛺𝑠
⋅ 𝐧̂ < 0,

(23)

here 𝐯𝐱∈𝜕𝛺𝑠
⋅ 𝐧̂ > 0 corresponds to local growth of the saturated region

nd 𝐯𝐱∈𝜕𝛺𝑠
⋅ 𝐧̂ < 0 corresponds to a local contraction of the saturated

egion. Domain boundaries which are saturated (𝜕𝛺 ∩ 𝜕𝛺𝑠) as shown
y a green line in Fig. 2, only utilize the saturated flux 𝐪𝑠 unless a

boundary condition is specified. Once the fluxes 𝐪𝑠 and 𝐪𝑢 are evaluated
for saturated and unsaturated regions the total flux vector, 𝐪𝑖𝑤, can be
assembled and used to update the saturation (or soil moisture content)
explicitly from Eq. (22). This coupled hyperbolic–elliptic PDE solution
technique is summarized in Algorithm 1.

Algorithm 1 Hyperbolic-elliptic PDE solution algorithm
1: while 𝑡 < 𝑇 do ⊳ Time loop
2: Calculate gravity dominated flux q𝑢 (= q𝑖𝑤) (12) at all cell faces

in 𝛺
3: Flag all the saturated cells 𝛺𝑠 where 𝑠𝑤 > 𝑠𝑤,𝑇 (threshold

saturation) ⊳ 𝑠𝑤,𝑇 ∼ 1 − 𝑠𝑔𝑟
4: if 𝛺𝑠 ≠ {} then ⊳ Saturated region flux evaluation loop
5: Set Dirichlet boundary condition (14) on head, ℎ = − ∫ x0 ĝ ⋅

dx, in all unsaturated cells
6: Set head, ℎ = − ∫ x0 ĝ ⋅ dx, in saturated cells on the domain

boundary (𝜕𝛺𝑠 ∩ 𝜕𝛺) to enable outflow
7: Solve Laplace-type equation (20) implicitly for head ℎ
8: Calculate saturated region’s face fluxes at all cell faces in 𝛺𝑠

using Darcy’s law (12), i.e., q𝑠 = −𝐾∇ℎ
9: Substitute the saturated cells’ face fluxes in q𝑖𝑤 considering

the front motion criteria (10) & (23) on 𝜕𝛺𝑠
10: ⊳ Domain boundaries which are saturated (𝜕𝛺 ∩ 𝜕𝛺𝑠) only

utilize saturated flux unless a boundary condition is specified
11: end if
12: Calculate the time step 𝛥𝑡𝑖 from equation (21)
13: Update the saturation s𝑖+1𝑤 explicitly from Equation (22)
14: Update time counter 𝑡𝑖+1 = 𝑡𝑖 + 𝛥𝑡𝑖

15: end while

4. Numerical tests

In this section we provide one and two dimensional, steady and
transient test problems. We further validate our numerical solver
against corresponding analytical results. For the examples considered in
this section the absolute permeability, k(𝜙), and relative permeability
of water, 𝑘𝑟𝑤(𝑠𝑤), follow power laws (Kozeny, 1927; Carman, 1937;
Brooks and Corey, 1964) given by

k(𝜙) = k0𝜙m and 𝑘𝑟𝑤(𝑠𝑤) = 𝑘0𝑟𝑤𝑠
n
𝑒 (𝑠𝑤),

so that 𝐾(𝜙, 𝑠𝑤) =
k0𝑘0𝑟𝑤𝜌𝑔

𝜇
𝜙m𝑠n

𝑒 (𝑠𝑤), (24)

with effective saturation 𝑠𝑒(𝑠𝑤) =
𝑠𝑤 − 𝑠𝑤𝑟
6

1 − 𝑠𝑔𝑟 − 𝑠𝑤𝑟
o

where the coefficients k0 and 𝑘0𝑟𝑤, m, n are model constants. Here the
residual water and gas saturations are given by 𝑠𝑤𝑟 and 𝑠𝑔𝑟 respectively.
The normalized relative permeability is 𝑘𝑟(𝑠𝑤,n) = 𝑘𝑟𝑤∕𝑘0𝑟𝑤 = 𝑠n

𝑒 (𝑠𝑤).
The residual saturations are set to zero (𝑠𝑤𝑟 = 𝑠𝑔𝑟 = 0) in the numerical
examples to match with the analytical results. Moreover, the power law
exponents are set to m = 3 and n = 2 unless stated otherwise. The
threshold for activation of the saturated region is 𝑠𝑤,𝑇 ∼ 0.999. The
following dimensionless variables are introduced for depth, volumetric
flux and time for sake of generality,

𝑧′ = 𝑧
𝑧0

, 𝐪′ = 𝐪
𝐾

and 𝑡′ = 𝑡𝐾
𝑧0

, (25)

where 𝑧0 is the characteristic depth (m) and 𝐾 is the saturated hy-
draulic conductivity (m/s) given by 𝐾 = 𝐾(𝜙0, 1 − 𝑠𝑔𝑟) with 𝜙0 being
he characteristic porosity of the problem. Typically, 𝜙0 is the porosity
t the surface (𝑧 = 0) unless otherwise stated. For all the test cases
resented in this section, the gravity vector, 𝐠 = (0, 0, 1)𝑇 , is aligned
ith the depth coordinate, 𝑧 and therefore the head in the unsaturated

cells is ℎ = −𝑧.

4.1. One-dimensional test cases

4.1.1. Drainage from a saturated soil
The first case is simple drainage of a fully-saturated soil with

uniform porosity 𝜙0. It corresponds to continued infiltration after the
nd of a heavy rainfall that has saturated the soil. It leads to formation
f a spreading front called rarefaction wave (Sisson et al., 1980).
his simple problem can help verify that the model captures the non-

inearity of the unsaturated flow and the transition of the domain from
aturated to unsaturated. The solution to this problem can be derived
rom the theory of hyperbolic equations (Lighthill and Whitham, 1955;
eVeque, 1992; Singh, 1997) and for the constitutive functions (24) we
ave as

𝑤(𝑧′, 𝑡′) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑠𝑤𝑟, 𝑧′ = 0

𝑠𝑤𝑟 +
(

𝑧′𝜙0
n𝑡′ (1 − 𝑠𝑔𝑟 − 𝑠𝑤𝑟)n

)
1

n−1 , 0 < 𝑧′

𝑡′ < 𝜆′

(1 − 𝑠𝑔𝑟),
𝑧′

𝑡′ ≥ 𝜆′

(26)

where 𝜆′ = 𝜆
𝐾 = n

𝜙0(1−𝑠𝑔𝑟−𝑠𝑤𝑟)
is the dimensionless characteristic speed

for the saturated domain moving downwards. Please note that for the
constant porosity case, the dimensional flux is 𝑞 = 𝐾𝑘𝑟(𝑠𝑤,n) and
therefore the dimensionless solution (26) is independent of m.

Fig. 3 shows drainage of an initially saturated porous reservoir
which leads to the formation of a rarefaction wave traveling in the
direction of gravity. Here the saturation linearly varies inside the rar-
efaction wave because the relative permeability depends quadratically
on the saturation, i.e., n = 2. For this problem, the surface has a no-flow
boundary condition whereas the base of the domain has an outflow
boundary condition. The domain of unit depth is divided uniformly
into 400 cells. The numerical solutions obtained from our proposed
numerical method agree very well with the analytical results.

4.1.2. Infiltration in a two-layered soil
The next 1D problem concerns infiltration in a dry, two-layered soil

with a jump in porosity and conductivity at 𝑧′ = 1 as shown in Fig. 4a.
The porosities and conductivities of the upper and lower layers are
𝜙𝑢, 𝐾𝑢 and 𝜙𝑙 , 𝐾𝑙, respectively. Here we consider the case of a more
orous and conductive upper layer, so that 𝜙𝑢 > 𝜙𝑙 and k𝑢 > k𝑙. The
oil is initially dry (𝑠𝑤(𝐱) = 0).

For transitional rainfall this leads to the spontaneous formation of
saturated region at the discontinuity and the propagation of two self-

harpening wetting fronts known as shock waves (Shadab and Hesse,
022). During transitional rainfall the rate of precipitation, 𝑅, is less
han the conductivity of the upper layer but exceeds the conductivity
f the lower layer (𝐾 < 𝑅 < 𝐾 ). Initially, an unsaturated wetting front
𝑙 𝑢
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Fig. 3. Drainage of an initially saturated, 50% porous reservoir at different dimensionless times. The blue lines show the simulation results and the red lines show the analytic
results. The numerical grid is 400 uniform cells on a domain with unit depth.

Fig. 4. Infiltration process in an initially dry two-layered soil for 𝑅∕𝐾𝑢 = 0.64, 𝜙𝑢 = 0.5 and 𝜙𝑙 = 0.2 with a jump at 𝑧′ = 1 shown at different dimensionless times 𝑡′ = (a) 0, (b)
0.3, (c) 0.63, (d) 0.7, (e) 0.87 and (f) 1. The blue lines show the numerical solution (denoted as S) and the red lines show the analytical solution (denoted as A) given in Shadab
and Hesse (2022). The dashed gray line at 𝑧′ = 1 (𝑧 = 𝑧0) refers to the location of the jump.

Fig. 5. Flux partitioning in a steady gravity current passing over a barrier. (a–d): Experiments conducted by Hesse and Woods (2010) with glycerol in a Hele-Shaw cell of width
3 mm and a barrier of width 30 cm. (e–f): Simulations performed using the algorithm proposed in the present work. (i) Dependence of the flux partitioning, 𝑄𝑏∕(𝑄𝑎 + 𝑄𝑏), on
the source location, 𝐿𝑎∕(𝐿𝑎 + 𝐿𝑏). The panel labels give the dimensionless source locations, 𝐿𝑎∕(𝐿𝑎 + 𝐿𝑏). Note that simulation results in panels (e–h) do not show the entire
computational domain to facilitate visual comparison with experiments.
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Fig. 6. Steady unconfined aquifer with a vertical seepage face for dimensionless discharge per unit widths, 𝑄∕(𝐾𝐿) = (a) 0.087 and (b) 0.211. (c) Variation of dimensionless
seepage face heights, 𝐻0∕𝐿, with the dimensionless discharge per unit width. The red lines are (Polubarinova-Kochina, 2015) analytic solutions evaluated from the software given
in Shadab et al. (2023a).
propagates downwards with constant velocity whose time-dependent
location can be found using Rankine–Hugoniot jump condition (see
Fig. 4b) (LeVeque, 1992). Since the less porous layer is unable to
accommodate the water flux as 𝐾𝑙 < 𝑅, a fully saturated region forms
at the location of the jump which grows outward, as shown in Figs. 4c–
4d. The initial wetting front thus bifurcates into two fronts moving
upwards and downwards, bounding the saturated region. Once the
upward moving shock reaches the surface, ponding occurs (see Figs. 4c–
4d). The locations of all the fronts can be found analytically using
extended kinematic-wave approximation, as given in Shadab and Hesse
(2022).

For validation of the numerical method, we consider a dimension-
less rainfall rate of 𝑅∕𝐾𝑢 = 0.64, in a dimensionless domain, 𝑧′ = 𝑧∕𝑧0 ∈
[0, 2], uniformly divided into 400 cells, with a porosity jump at 𝑧′ = 1.
The porosity in upper region (𝑧′ < 1) is 𝜙𝑢 = 0.5 whereas porosity
in the lower region (𝑧′ ≥ 1) is 𝜙𝑢 = 0.2. The numerical results agree
well with the analytical results from Shadab and Hesse (2022). The
base of the domain is an outflow boundary, whereas the top is set to a
constant saturation 𝑠𝑤 = 0.8 corresponding to 𝑅∕𝐾𝑢 = 0.64 as long as
the flow is unsaturated. After the water ponds, the top becomes part
of the saturated region, and a constant head equal to the gravitational
head (ℎ = −𝑧) is applied.

In Appendix E, we further compare the proposed numerical model
against the solutions of the full Richards equation with capillary effects
provided by the commonly used software Hydrus (Šimunek et al.,
2012). At small scales where capillary gradients are fully resolved, both
our model and Hydrus match analytical solutions for the wetting front
(see Appendix E.1 and Fig. 11). At large scales with low resolution,
the full Richards solver in Hydrus fails to converge, either due to the
sharp variations at the wetting fronts or unresolved capillary pressure
variations (Fig. 13a), whereas our solver robustly provides results that
match analytic solutions (Fig. 13c). If grid resolution is increased for
this case, Hydrus converges but the solution does not conserve mass
and the results are oscillatory near the wetting front, due numerical
instabilities from the unresolved capillary pressure term (Fig. 13b). In
contrast, our solver continues to provide a robust monotone solution
that resolves the wetting front more accurately (Fig. 13d) and conserves
mass discretely. This is demonstrated by the mass balance ratio criteria,
defined as the ratio of the total mass in the domain to the flux of
water at the boundaries (Celia et al., 1990). A unit value of the mass
balance ratio indicates conservation of mass, which is demonstrated
by the present numerical technique for both medium and coarse grids
(see Fig. 15), where its variation is on the order of machine precision,
i.e., 10−12.

Lastly, when Hydrus converges it takes far more iterative steps
(Fig. 14b) compared to the present solver (Fig. 14d). In addition, the
iterations from our model are cheaper because we only solve a linear
8

system for the cells in the saturated region while Hydrus solves a linear
system for the whole domain. This reduction in computational cost
increases in the multi-dimensional problems considered below.

4.2. Two-dimensional steady test cases

For the two-dimensional problems, the gravity is pointing vertically
downwards, i.e., 𝐠̂ ≡ (0, 0, 1)𝑇 . The horizontal direction is scaled with
the same characteristic length as the depth, so that 𝑥′ = 𝑥∕𝑧0, is added
to the previously defined dimensionless variables, given in Eq. (25).

4.2.1. Perched aquifer over a horizontal barrier
This test concerns an idealized two-dimensional perched aquifer

that develops when a constant discharge per unit depth, 𝑄𝑖, infiltrates
into a soil that includes a horizontal flow barrier of characteristic
length, 𝐿 (Fig. 5a). As the infiltrating fluid encounters this barrier it
initially spreads laterally as a gravity current (Huppert and Woods,
1995). Once the fluid pours over the edges of the barrier the gravity
current evolves to a steady shape. If the steady current is of low aspect
ratio, with 𝐿 much less than its vertical extent, approximate analytic
solutions can be found using the Dupuit approximation (Hesse and
Woods, 2010).

The gravity current divides the incident discharge, 𝑄𝑖, into two
discharges over the left and right edges, 𝑄𝑎 and 𝑄𝑏, located at distances
𝐿𝑎 and 𝐿𝑏 respectively from where the water impinges on the barrier
(see Fig. 5a). Hesse and Woods (2010) use the Dupuit approximation
to estimate the fraction (𝑓𝑏) of the incident discharge 𝑄𝑖 which spills
over the right end of the barrier as

𝑓𝑏 =
𝑄𝑏

𝑄𝑎 +𝑄𝑏
=

𝐿𝑎
𝐿𝑎 + 𝐿𝑏

. (27)

This theoretical result suggests that the discharge, 𝑄𝑏, increases linearly
with the distance of the source from the opposite edge, 𝐿𝑎. Comparison
with experimental discharge measurements confirms this and shows
good quantitative agreement with the theory (Fig. 5i).

For the numerical experiments, a 40% porous domain 𝛺 ≡ [0, 7] ×
[0, 4] is divided into 140 × 80 cells. The impermeable barrier is placed
in the region [0.5, 6.5] × [3, 3.3], and a no-flow boundary condition
is imposed along its edge. At the top of the domain the incident
discharge infiltrates over a thin region with a dimensionless width
of 0.2 (Fig. 5e), which results in a surface saturation of 𝑠𝑤 = 0.975.
Boundary conditions are only required at the base of the domain and set
to outflow. Numerical solutions are evolved to steady state for different
locations of the incident discharge (Figs. 5e–5h). Visual comparison
with experimental images from Hesse and Woods (2010) (Figs. 5a–5d),
show qualitative agreement of the current shapes. Further, an excellent
quantitative comparison between the theoretical, experimental and
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simulation results can be observed for the dependence of discharge
partitioning, 𝑄𝑎∕(𝑄𝑎 + 𝑄𝑏), on the source location, 𝐿𝑎∕(𝐿𝑎 + 𝐿𝑏), as
shown in Fig. 5i.

4.2.2. Unconfined aquifer with a vertical seepage face
Free surface flow in homogeneous porous reservoirs with devel-

opment of a seepage face is a classic problem in subsurface hydrol-
ogy (Bear, 1972; Polubarinova-Kochina, 2015; Shadab et al., 2023b).
Here we consider unconfined steady groundwater flow in a homoge-
neous 2D vertical cross-section of horizontal extent 𝐿 with an imper-
meable base. Fluid is injected at the left boundary and an outflow
boundary with atmospheric pressure is applied on the right. In the
resulting steady flow the groundwater table slopes to the right and its
non-zero elevation at the right boundary is referred to as the height of
the seepage face, 𝐻0 (Fig. 6a).

For the numerical simulations, the dimensionless domain 𝛺 ≡
[0, 1]×[0, 1] is divided into a uniform mesh of 75 × 75 cells. The medium
has a porosity of 0.5 and is initially dry, i.e., 𝑠𝑤(𝐱) = 0. The boundary
condition on the left is a fixed discharge per unit width (m2/s), 𝑄,
which is scaled as 𝑄∕(𝐾𝐿). The boundary condition at the seepage face
is dynamic until the steady state is achieved. In the unsaturated region
above the groundwater table the boundary condition is not necessary
and in the saturated region below a constant head equal to atmospheric
pressure is applied, ℎ = −𝑧. No flow boundary conditions are applied
at the top and bottom.

The approximate analytical solution to this problem is provided
by Polubarinova-Kochina (2015) but has to be evaluated numerically
due to its complexity (Shadab et al., 2023a). The numerical results for
height of the groundwater table are very close to this analytical solution
for 𝑄∕(𝐾𝐿) = 0.087 and 0.211 as shown in Figs. 6a and 6b respectively.
Moreover, the variation in the dimensionless height of seepage face,
𝐻0∕𝐿, with the dimensionless discharge per unit width, 𝑄∕𝐾𝐿, shows
an excellent quantitative agreement in between the analytical and the
numerical results (Fig. 6c).

4.3. Two-dimensional transient test cases

No exact solutions to variably saturated, transient 2D flows are
available, but for geometries with high aspect ratios, the Dupuit–
Boussinesq theory provides a good approximation of the dynamics
(Troch et al., 2013). Solutions can typically be found for simple scenar-
ios where the shape of the water table is invariant under a stretching
transformation (Barenblatt, 1996). These self-similar solutions, while
approximate, typically compare very well with suitable experiments
and predict the first-order dynamics (Woods, 2014). Below we use
two such self-similar solutions to compare with the transient numerical
results for the evolution of an unconfined aquifer.

4.3.1. Fluid drainage from the edge of a horizontal aquifer
The first transient test is on buoyancy-driven drainage of a hori-

zontal aquifer (Rupp and Selker, 2005; Zheng et al., 2013). Consider a
rectangular, homogeneous aquifer with porosity 𝜙0 that is fully satu-
rated initially. If all boundaries are no-flow except the right boundary
(𝑥 = 𝐿) which is an outflow, the evolution of the groundwater table is
self-similar at late time and in the Dupuit–Boussinesq approximation
the problem reduces to a nonlinear diffusion equation (Rupp and
Selker, 2005). This self-similar analysis neglects the effects of seepage
face and vertical flow which is a good approximation if the aquifer is
low aspect ratio where the horizontal extent of the aquifer is much
larger than its vertical extent. Following Zheng et al. (2013), we
introduce the dimensionless variables ℎ′ = ℎ∕𝐿 and 𝜂 = 𝑥∕𝐿 and
assume the self-similar solution takes the form

ℎ′ =
f(𝜂)𝜙0 (28)
9

𝑡′
here the dimensionless function f(𝜂) is defined by the boundary value
roblem

d
d𝜂

(

f df
d𝜂

)

+ f = 0, subject to df
d𝜂

|

|

|

|0
= 0 and f (1) = 0. (29)

his differential equation can be solved numerically to obtain the
elf-similar shape of the current at a late time.

Moreover, the total volume of groundwater inside the domain at a
ate time is defined as (𝑡) = 𝑤𝜙0 ∫

𝐿
0 ℎ(𝑥, 𝑡)d𝑥 where 𝑤 is the depth in

the third dimension. So the total dimensionless volume of fluid inside
the domain at any time is  ′(𝑡′) which is defined as

′(𝑡′) =
(𝑡)
𝑤𝐿2

=
𝜙2
0
𝑡′ ∫

1

0
f (𝜂)d𝜂 ∝ 1

𝑡′
. (30)

The groundwater volume is therefore predicted to decline as 1∕𝑡′ at late
time. Below we refer to the solution of (29) as semi-analytical, because
it can be solved to any desired accuracy with standard numerical
integration techniques.

For the numerical simulation, a low aspect ratio domain 𝛺 ≡ [0, 3]×
[0, 1] is considered to reduce the effect of vertical flow and the height
of the seepage face. The domain is divided into 150 × 100 cells. The
porosity of the medium is 0.5. All boundaries are no flow except the
right one which is an outflow. The medium is 90% saturated initially
however the initial condition does not affect the solution at late stages,
because all initial conditions will asymptote to the self-similar solution
at late time (Barenblatt, 1996). The resulting gravity current drains
from the edge of the reservoir as shown in Figs. 7a–7e. Because the
self-similar solution only approximates the late-stage behavior we show
the current evolution for 𝑡′∕𝜙0 ≥ 6. At late times, numerical and semi-
nalytical solutions agree fairly well but the numerically computed
roundwater table is slightly higher than the semi-analytical results.
he difference in the results is likely due to the development of a
eepage face at the edge (Fig. 6), but may also be due to non-zero
ertical flow neglected in the semi-analytic solution. This difference
n the height of the groundwater table also affects the evolution of di-
ensionless volume shown in Fig. 7f, where at late stages the simulated

olume of fluid is more than the semi-analytical volume evaluated from
30). But the numerical result asymptotes to the theoretical scaling,
′ ∼ 𝑡′−1.

.3.2. Propagation of a gravity current into a porous layer
Next we consider the propagation of a finite volume of groundwater

nto homogeneous horizontal porous medium that is initially dry. Hesse
t al. (2007) have shown that at late time when the groundwater table
s much lower than the upper boundary the flow asymptotes to classic
elf-similar solution found by Barenblatt (1952). Huppert and Woods
1995) show that this solution, often referred to as a gravity current,
rovides a good approximation to experimental results. Consider the
nstantaneous release of finite volume of fluid,  (m3), in a horizontal

porous medium with constant porosity 𝜙0. Following Huppert and
Woods (1995) the approximate analytic solution of the free-surface
height, ℎ(𝑥, 𝑡), is described using dimensionless variables introduced in
Section 4.3.1. The dimensionless analytical solution is therefore given
by

ℎ′(𝑥′, 𝑡′) =
(

𝜙0 ′2

𝑡′

)

1
3
𝑓 (𝜔), with 𝑓 (𝜔) =

𝜔2
0 − 𝜔2

6
, 0 < 𝜔 < 𝜔0 (31)

where 𝜔0 =
(

9
𝜙0

)1∕3
, 𝜔 = 𝑥′

( ′𝑡′∕𝜙0)1∕3
and  ′ = ∕𝑤𝑧20, as introduced in

Section 4.3.1.
The 50% porous domain 𝛺 ≡ [0, 25]×[0, 1] is divided into 200 × 100

cells. In this problem, the initial condition is set as the analytic solution
at 𝑡′ = 0.2 (see Fig. 8a). The boundary conditions are natural on
left and bottom boundaries and are not required on top and right
boundaries. The groundwater thus generated migrates towards right
as shown in Figs. 8a–8d. The numerical solutions are at par with the
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Fig. 7. Drainage from the edge of horizontal aquifer at dimensionless times 𝑡′∕𝜙0 = (a) 6, (b) 12, (c) 18, (d) 24 and (e) 30. (f) The corresponding evolution of total dimensionless
volume of fluid inside the domain, ∕(𝑤𝐿2). In all plots, the red lines show the semi-analytic solutions. The blue lines or contours show numerical solution.
Fig. 8. Gravity current propagation on a horizontal porous layer at dimensionless times 𝑡′ = (a) 0.2, (b) 16, (c) 32 and (d) 48. The spatial coordinates are dimensionless. The
blue contour shows the solution from the proposed numerical method. The corresponding evolution of (e) dimensionless maximum height of the mound and its (f) dimensionless
maximum spreading distance along 𝑥-axis is also provided. The solid blue line refers to the numerical solution. In all the plots, the red line shows the approximate analytic solution
given by Eq. (31).
approximate analytical results given by Eq. (31) shown by red lines.
It can be quantitatively observed in the time evolution of maximum
height of the water table, ℎ′𝑚𝑎𝑥, along 𝑧 axis and maximum spreading
distance, 𝑥′𝑚𝑎𝑥, along the 𝑥 axis in Figs. 8e and 8f respectively. Although
both numerical results follow the analytical results with the theoretical
scaling (ℎ′𝑚𝑎𝑥 ∼ 𝑡′−1∕3, 𝑥′𝑚𝑎𝑥 ∼ 𝑡′1∕3), there is a slight difference in the
𝑥′𝑚𝑎𝑥 results due to finite spatial resolution of the numerical simulations.

4.3.3. Infiltration into a heterogeneous soil
The two-dimensional tests above have considered simple homoge-

neous media and have focused on the dynamics of the groundwater
table. However, heterogeneity is a key characteristic of soils (Zhu
and Zhang, 2013) and the method proposed here can be applied to
complex heterogeneous soils. Below we consider gravity-driven infil-
tration of rainwater into a heterogeneous soil and its interaction with
multi-dimensional soil structure.

Here we consider a soil with porosity and permeability distributions
given by correlated random fields (Appendix D). We assume no spatial
trend so the spatial correlation is only a function of the separation dis-
tance. Soils exhibit a transverse anisotropy (see Zhu and Zhang (2013)
for a review) where the horizontal scale of parameter fluctuation is
often more than an order of magnitude larger than the vertical scale
10
of fluctuation due to the nature of soil deposition (Yang et al., 2022).
Here we consider a stratified, heterogeneous soil with two fluctuation
lengths, 𝜃𝑧 = 1 and 𝜃𝑥 = 10 with the mean dimensionless permeability
k𝑚𝑒𝑎𝑛∕k0 = 1. The resulting heterogeneous porosity profile is shown in
Fig. 9.

This problem concerns rainwater infiltration in a layered soil in a
domain 𝛺 ≡ [0, 5] × [0, 1] which is divided into 250 × 100 cells. The
entire surface boundary condition (𝑧′ = 0) is set to complete saturation
(𝑠𝑤 = 1), which corresponds to a heavy rainfall, in order to visualize
the effects of multidimensional flow. The rest of the boundaries are
set to be outflows. The resulting gravity driven infiltration is shown
in Fig. 10 at different dimensionless times. Initially, an almost uniform
front moves downwards (see Figs. 10a–10b). But since the soil is more
porous on the left half than the right half, the latter leads to formation
of fully saturated region as shown in Figs. 10c–10d. Whereas the front
in the left half infiltrates faster. The water saturation on the left is
lower in general as the medium is more porous as shown in Fig. 10e.
Due to presence of lower porosity layer on the right half, the soil
layers beneath remain inaccessible for very long periods of time. Inside
the fully saturated regions, the dynamics switches from gravity driven
flow to pressure driven flow. Once a saturated region forms, the flow
can move in directions other than the gravity vector, i.e., laterally
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Fig. 9. Porosity field of a stratified, heterogeneous soil with mean porosity 𝜙𝑚𝑒𝑎𝑛 = 46.5%, maximum porosity 𝜙𝑚𝑎𝑥 = 85% and minimum porosity 𝜙𝑚𝑖𝑛 = 21.6% with fluctuation
lengths 𝜃𝑥 = 10 and 𝜃𝑧 = 1.
Fig. 10. Time sequenced images of infiltration in a stratified, heterogeneous soil at dimensionless times 𝑡′ = (a) 5, (b) 10, (c) 50, (d) 100 and (e) 250.
or upwards leading to ponding and runoff. In this problem multiple
saturated (perched) regions form inside the domain but they are treated
simultaneously and efficiently in the approach proposed here. This is a
challenging problem due to soil heterogeneity as well as formation of
multiple saturated regions.

5. Conclusions

In this paper we first introduced a hyperbolic–elliptic partial dif-
ferential equation based model for variably saturated groundwater
flow in the limit of negligible capillary forces. The assumption of
negligible capillarity holds either at large spatial scales and/or in
low-textured soils such as sand. The technique switches dynamically
11
from solving a hyperbolic problem for two-phase flow in unsaturated
regions to solving an elliptic problem for single-phase flow in saturated
regions. The developed multidimensional numerical model is based
on a conservative finite difference scheme and tensor-product grid
approach which can efficiently and robustly handle sharp saturation
gradients as well as fully saturated regions. We also provide a suite of
challenging benchmark problems in one and two dimensions along with
their corresponding (semi-) analytical results. These problems involve
variably saturated flow which can help in verification and validation as
well as performance comparison of numerical solvers. Our simulation
results show excellent agreement with the analytical solutions for all
the proposed problems. Finally, we consider a complicated test of
rainwater infiltration into a stratified, heterogeneous soil. This test
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illustrates how the proposed method deals with the intricate infiltration
dynamics which involves formation and evolution of multiple saturated
regions also causing perching and lateral flow.
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Appendix A. One dimensional operators

Here we build on the discrete operator approach initially outlined
by Hesse and Castillo-Rogez (2018) and implemented in Hesse (2020).
We extend the approach to include advection and three dimensions
and describe the implementation of boundary conditions through the
elimination of constraints in detail.

The gradient, divergence and mean operators are approximated
with a second-order finite difference approximation. For a
one-dimensional grid with 𝑛 (𝑚; 𝑙) cells of uniform width 𝛥𝑥 (𝛥𝑧;
𝑦) and therefore (𝑛 + 1) faces, the 𝑛 by (𝑛 + 1) discrete divergence
perator, 𝐃𝑛 ∈ R𝑛×(𝑛+1), and the (𝑛+ 1) by 𝑛 discrete gradient operator,
𝑛 ∈ R(𝑛+1)×𝑛, respectively take the forms

∇⋅ ≈ 𝐃𝑛 =
1
𝛥𝑥

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−1 1
−1 1

⋱ ⋱
−1 1

−1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦𝑛 × (𝑛+1)

and ∇ ≈ 𝐆𝑛 =
1
𝛥𝑥

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
−1 1

− 1 1
⋱ ⋱

−1 1
−1 1

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦(𝑛+1) × 𝑛

. (32)

The discrete gradient, 𝐆𝑛, assumes a natural boundary condition,
.e., no flow across the domain boundary. In a similar fashion, the (𝑛+1)
y 𝑛 arithmetic mean operator, 𝐌𝑛 ∈ R(𝑛+1)×𝑛, can be constructed as

𝑛 =
1
2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑚𝑏
1 1

1 1
⋱ ⋱

1 1
1 1

𝑚𝑏

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦(𝑛+1) × 𝑛

. (33)

Here 𝑚𝑏 = 2 for placing the boundary cell value at the corresponding
boundary face without interpolating and 𝑚𝑏 = 0 for a zero value (no-
flow boundary condition) as placeholders. The entries corresponding to
12

d

the boundaries are typically replaced by the boundary conditions which
will be discussed in Appendix C.

Advection operator. For solving the hyperbolic Richards equation,
he advective flux computation requires value of saturation (or soil
oisture content) at the faces to evaluate the hydraulic conductivity.

or that purpose, we use Darcy flux-based upwinding to compute the
ace values of saturation (Godunov and Bohachevsky, 1959). In matrix
orm, we construct an advection matrix operator, 𝐀(𝐪𝑤) ∈ R(𝑛+1)×𝑛,
hich takes in the (𝑛 + 1) face flux vector 𝐪𝑤 = [𝑞1, 𝑞2,… , 𝑞𝑛−1, 𝑞𝑛+1]𝑇

nd provides the (𝑛+1) by 𝑛 advection operator A. The one-dimensional
dvection operator 𝐀 is constructed as

𝑛 = 𝐐+
(𝑛+1)𝐀

+
𝑛 + 𝐐−

(𝑛+1)𝐀
−
𝑛 (34)

here in one dimension,

𝐐+
(𝑛+1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑞+1
𝑞+2

𝑞+3
⋱

𝑞+𝑛
𝑞+𝑛+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦(𝑛+1) × (𝑛+1)

,

𝐐−
(𝑛+1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑞−1
𝑞−2

𝑞−3
⋱

𝑞−𝑛
𝑞−𝑛+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦(𝑛+1) × (𝑛+1)

, (35)

𝐀+
𝑛 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
1

1
⋱

1
1

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦(𝑛+1) × 𝑛

nd 𝐀−
𝑛 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
1

1
⋱

1
1
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦(𝑛+1) × 𝑛

, (36)

here 𝑞−𝑖 refers to negative flux, min{𝑞𝑖, 0}, and 𝑞+𝑖 refers to positive
lux, max{𝑞𝑖, 0}, for 𝑖 ∈ {1, 2,… , 𝑛, 𝑛 + 1}.

ppendix B. Discrete operators in three dimensions

The present framework can be easily extended to three dimensions
ith the same approach. The tensor product grid enables a straightfor-
ard extension from two to three dimensions with a few more lines of

ode. In three dimensions, we use a regular Cartesian mesh with 𝑛 cells
f size 𝛥𝑥 in 𝑥 direction, 𝑚 cells of size 𝛥𝑦 in 𝑦 direction and 𝑙 cells of
ize 𝛥𝑧 in 𝑧 direction. The three-dimensional divergence, gradient and
ean operators (𝐃,𝐆 and 𝐌 respectively) are then composed of three

lock matrices as

=
⎡

⎢

⎢

⎣

𝐇𝑥
𝐇𝑦
𝐇𝑧

⎤

⎥

⎥

⎦

, 𝐇 ∈ {𝐃𝑇 , 𝐆 , 𝐌} (37)

ith directional operators defined as

𝐇𝑥 = 𝐈𝑙 ⊗ (𝐇𝑛 ⊗ 𝐈𝑚), 𝐇𝑦 = 𝐈𝑙 ⊗ (𝐈𝑛 ⊗𝐇𝑚)

nd 𝐇𝑧 = 𝐇𝑙 ⊗ (𝐈𝑛 ⊗ 𝐈𝑚), 𝐇 ∈ {𝐃 , 𝐆 , 𝐌}. (38)

imilar to two dimensional operators given in Section 3.1, the one

imensional operators, {𝐃𝛼 ,𝐆𝛼 ,𝐌𝛼} for 𝛼 ∈ {𝑛, 𝑚, 𝑙}, can be evaluated

https://github.com/mashadab/VarSatFlow
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from Eqs. (32)–(33). Moreover, the 𝑁𝑓 by 𝑁 advection operator 𝐀 can
be expressed in three dimensions as

𝐀 = 𝐐+𝐀+ + 𝐐−𝐀−, (39)

where 𝑁𝑓 is the total number of faces which is the summation of 𝑥,
and 𝑧 normal faces, i.e., 𝑁𝑓 = 𝑁𝑓𝑥 + 𝑁𝑓𝑦 + 𝑁𝑓𝑧 and 𝑁 is the total

number of cells given by 𝑁 = 𝑛𝑚𝑙. Additionally, the three-dimensional
lock matrix of positive or negative fluxes, 𝐐±, and the advection

operator, 𝐀±, are given by

𝐐± =
⎡

⎢

⎢

⎣

𝐐±
𝑥

𝐐±
𝑦

𝐐±
𝑧

⎤

⎥

⎥

⎦𝑁𝑓 × 𝑁𝑓

and 𝐀± =

⎡

⎢

⎢

⎢

⎣

𝐀±
𝑥

𝐀±
𝑦

𝐀±
𝑧

⎤

⎥

⎥

⎥

⎦𝑁𝑓 × 𝑁

. (40)

In three-dimensions, the number of 𝑥, 𝑦 and 𝑧 normal faces are 𝑁𝑓𝑥 =
𝑛 + 1)𝑚𝑙, 𝑁𝑓𝑦 = 𝑛(𝑚 + 1)𝑙 and 𝑁𝑓𝑦 = 𝑛𝑚(𝑙 + 1) respectively. 𝐐±

𝑥 (𝐐±
𝑦 ;

±
𝑧 ) is the 𝑁𝑓𝑥 by 𝑁𝑓𝑥 (𝑁𝑓𝑦 by 𝑁𝑓𝑦; 𝑁𝑓𝑧 by 𝑁𝑓𝑧) diagonal matrix with
(𝑦; 𝑧) positive/negative face Darcy fluxes in the diagonal. Moreover,

he 𝑥, 𝑦 and 𝑧 matrix components of 𝐀+ and 𝐀− are expressed similar
o the 3D discrete operators (38) as follows,

±
𝑥 = 𝐈𝑙 ⊗

(

𝐀±
𝑛 ⊗ 𝐈𝑚

)

, 𝐀±
𝑦 = 𝐈𝑙 ⊗

(

𝐈𝑛 ⊗ 𝐀±
𝑚

)

and 𝐀±
𝑧 = 𝐀±

𝑙 ⊗
(

𝐈𝑛 ⊗ 𝐈𝑚
)

(41)

here 𝐀±
𝑛 , 𝐀±

𝑚 and 𝐀±
𝑙 are again the one-dimensional operators as

xpressed in (35). For the definitions of one-dimensional operators, see
qs. (32)–(33). The sequence is chosen to respect the internal ordering
f Matlab where the cells and faces are ordered in 𝑦 direction first,
hen 𝑥 and then 𝑧. Please note that the vertical dimension in this case
instead of 𝑧 as proposed earlier in two-dimensional cases for sake of

onsistency with the literature.

ppendix C. Boundary conditions

Boundary conditions are required so that the PDE problem becomes
ell-posed. In this section, we discuss the implementation of the bound-
ry conditions taking the discrete system (20) as an example. However,
ts application is more general which includes the discrete saturation
q. (22). Natural boundary conditions (zero gradient or no flow) are
lready implemented in the discrete gradient operator so there is no
xtra effort. Note that if gradient is not being used in the evaluation of
he flux, the natural boundary condition is enforced in the divergence
perator by calculating it from 𝐃 = −𝐆𝑇 .

Neumann boundary condition. Its implementation is fairly straightfor-
ward. For zero flux at the boundary, nothing needs to be done since it
is in-built in the discrete gradient. Although, the non-zero fluxes at the
boundary are converted to an additional source term corresponding to
Neumann boundary cells

𝑓𝑛 = 𝑞𝑏
𝐴
𝑉

(42)

where 𝑓𝑛 is the source term due to the Neumann BC, 𝑞𝑏 is the boundary
lux, 𝐴 is the area of the corresponding boundary face and 𝑉 is the
olume of the corresponding boundary cell. The extra source term for
eumann boundary takes the form of 𝑁 by 1 vector, 𝐟𝑛, which is added

to the governing discrete equation. For example, the governing discrete
Eq. (20) becomes 𝐋 𝐡 = 𝐟𝑠 + 𝐟𝑛.

Dirichlet boundary conditions. Since Dirichlet boundary conditions
rescribe the unknowns (for example, head ℎ) at the boundary cell
enters, the number of unknowns thus has to be reduced in accordance
ith the constraints. The two cases are considered as follows:

a. Homogeneous Dirichlet BC: In this case, the system of equations
as to be reduced according to the constraints. The idea is to project
he solution vector, 𝐡 ∈ R𝑁 , onto a reduced subspace that lives in
(𝑁−𝑁𝑐 ) using an orthogonal projection, eliminating the 𝑁𝑐 number of
onstraints (Trefethen and Bau, 1997). The subspace of the reduced
nknowns is the null space of the 𝑁 by 𝑁 constraint matrix B,
13

𝑐

.e.,  (𝐁) ∈ R(𝑁−𝑁𝑐 ), where 𝐁 is defined as 𝐁 𝐡 = 𝟎. Any orthogonal
rojector made from a set of orthonormal bases for  (𝐁) can project
he unknowns from full space in R𝑁 to the reduced space  (𝐁) ∈
(𝑁−𝑁𝑐 ). Therefore, an 𝑁 by (𝑁 − 𝑁𝑐 ) matrix N can be constructed

rivially with standard orthonormal bases with the orthogonal projector
eing 𝐍𝑇 𝐍 or 𝐍 𝐍𝑇 which lives in R(𝑁−𝑁𝑐 )×(𝑁−𝑁𝑐 ) (Trefethen and Bau,
997). From an identity matrix 𝐈𝑁 , B and N can be easily constructed
y eliminating the columns for the former and keeping the rows for
he latter, corresponding to the degree of freedom of the constraints.
urther, 𝐋𝑟 = 𝐍𝑇𝐋 𝐍 is defined as the discrete Laplacian operator
atrix of reduced dimensions (𝑁 −𝑁𝑐 )× (𝑁 −𝑁𝑐 ), 𝐡𝑟 = 𝐍𝑇 𝐡 is defined

s the (𝑁 −𝑁𝑐 ) by 1 vector of unknowns in the reduced subspace that
elongs to R(𝑁−𝑁𝑐 ) and 𝐟𝑠,𝑟 = 𝐍𝑇 𝐟𝑠 is the (𝑁 −𝑁𝑐 ) by 1 vector of the
ource term in the reduced subspace that lives in R(𝑁−𝑁𝑐 ). The final
educed matrix equation is 𝐋𝑟𝐡𝑟 = 𝐟𝑠,𝑟 which can be solved directly for
𝐡𝑟.

b. Heterogeneous Dirichlet BC: Dealing with non-zero Dirichlet
boundary conditions is slightly more sophisticated. The (quasi-)
linearity of the problem helps split the solution 𝐡 into homogeneous
𝐡0 and particular 𝐡𝑝 solution vectors of size 𝑁 by 1 for solving the
oundary value problem (Greenberg, 2013). The 𝑁𝑐 by 𝑁 constraint

matrix 𝐁 is the same as earlier which governs 𝐁 𝐡𝑝 = 𝐜 where 𝐜 is the
𝑁𝑐 by 1 vector of known values at the Dirichlet boundaries.

𝐁 𝐡0 = 𝟎
𝐁 𝐡𝑝 = 𝐜

}

𝐁 (𝐡0 + 𝐡𝑝) = 𝐜 (43)

Since B is a 𝑁𝑐 by 𝑁 right invertible matrix consisting of orthonor-
mal bases, an orthogonal projector 𝐁 𝐁𝑇 ∈ R𝑁𝑐×𝑁𝑐 of dimension 𝑁𝑐×𝑁𝑐
can be constructed (Trefethen and Bau, 1997). We define the particular
solution 𝐡𝑝,𝑟 in reduced subspace, that lives in R𝑁𝑐 , to be 𝐡𝑝,𝑟 = 𝐁 𝐡𝑝 = 𝐜
and 𝐡𝑝 = 𝐁𝑇 𝐡𝑝,𝑟. Therefore, we solve 𝐁𝑇 𝐁 𝐡𝑝,𝑟 = 𝐜 to get 𝐡𝑝 from
the Dirichlet boundary constraint matrix, B, and the Dirichlet boundary
condition values, c.

Next, to find the homogeneous solution 𝐡0, plugging the decom-
posed solution (43) in the discrete governing Eq. (20) gives the final
system, 𝐋 𝐡0 = 𝐟𝑠 + 𝐟𝐷, where 𝐟𝐷 is source term from heteroge-
neous Dirichlet BCs, 𝐟𝐷 = −𝐋 𝐡𝑝. Then similar to the homogeneous
Dirichlet boundary condition case, the constraints are eliminated using
orthogonal projection, again leading to a well-posed, reduced system
of equations which can be solved for the homogeneous solution 𝐡0.
Finally, the solution can be evaluated from 𝐡 = 𝐡0 + 𝐡𝑝.

Appendix D. Generation of correlated random fields

In Section 4.3.3 we use a correlated random field for both the poros-
ity and the permeability in the heterogeneous test case. Assuming the
scale of formation of fluctuation is elliptical, the exponential correlation
function, 𝜚, for transverse anisotropy is given in Zhu and Zhang (2013)
as

𝜚 = exp

(

−2

√

𝛥2

𝜃2𝑥
+ 𝛥2

𝜃2𝑧

)

(44)

where 𝛥 and 𝛥 are respectively the horizontal and vertical sepa-
ation distances between two observations in the space. The symbols
𝑥 and 𝜃𝑧 denote the principal scales of fluctuation in the 𝑥 and 𝑧

directions respectively.
The matrix decomposition method is utilized in this approach which

requires the defining a discrete set of 𝑁 spatial points at which the
random field is sampled. Subsequently, it helps construct an 𝑁 by 𝑁
covariance matrix, 𝑪 which quantifies the correlation between all of
the spatial points being sampled. The exponential correlation function
𝜚 (44) helps define the covariance matrix. For generating realizations
of correlated random field, matrix decomposition method is often
utilized (Zhu and Zhang, 2013). An expensive but exact method is
Cholesky factorization (Trefethen and Bau, 1997) which is performed
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Fig. 11. Infiltration process in an initially dry two-layered soil with m = 3,n = 7.15306 and no residual saturations shown at different times. The porosities 𝜙𝑢 = 0.43, 𝜙𝑙 = 0.1 and
𝑅 = 42.44 cm/day are fixed. The vertical axis refers to the depth 𝑧 whereas the horizontal axis refers to the water saturation 𝑠𝑤. ‘A’, ‘S’, and ‘H’ refer to the analytical, simulated
(present model), and Hydrus solutions respectively. Here 𝑡𝑠 and 𝑡𝑝 correspond to the time of formation of the saturated region and time of ponding respectively.
on the covariance matrix to obtain upper (𝑳𝑇 ) and lower (𝑳) triangular
matrices as

𝑳 𝑳𝑇 = 𝑪 .

Next an 𝑁 by 1 vector 𝑿 consisting of uncorrelated random numbers
from a unit normal distribution is created. Then the corresponding 𝑁 by
1 vector of correlated random variables, 𝒀 , is evaluated by computing
𝑳𝑿 and subsequently adding the mean, 𝝁 as

𝒀 = 𝑳 𝑿 + 𝝁. (45)

Since the permeability has order of magnitude variations in a soil,
the final transformation, 𝐤 = 10𝒀 , yields the 𝑁 × 1 vector of ab-
solute permeability inside each cell. Then the porosity field, 𝜙(𝐱), is
then evaluated from the permeability by setting a maximum value of
porosity, 𝜙𝑚𝑎𝑥 (𝜙𝑚𝑎𝑥 = 85% in the present problem), and the maximum
evaluated dimensionless permeability, k𝑚𝑎𝑥∕k0, from Eq. (24) as 𝜙(𝐱) =
𝜙𝑚𝑎𝑥

(

k(𝐱)∕k𝑚𝑎𝑥
)1∕m. Choosing a higher value of m (m = 8) helps fix

the mean porosity to 46.5% and minimum to 21.6% which are close to
the values for the fine sand Das and Das (2008). The resulting porosity
field is shown in Fig. 9.

Appendix E. Comparison against hydrus

In Section 4 we have provided comparisons between the semi-
analytic solutions and the numerical solutions of the governing equa-
tion in the limit of no capillary forces. Below we provide additional
validation via a comparison with a numerical solution to the full
Richards equation using Hydrus-1D (Šimunek et al., 2012) and ana-
lytical results using kinematic wave theory (Shadab and Hesse, 2022).
It will help highlight the importance of neglecting capillary terms
and dissect its effect at different spatial scales, along with solver
performance.

E.1. At smaller scales

Here we choose the infiltration in double-textured soil, as discussed
in Section 4.1.2. The Hydrus-1D simulation domain [0,100 cm] is
discretized uniformly into 400 cells with cell width of 0.25 cm and
runs until a maximum time of 16.96 h. The domain has a jump in
14
porosity and hydraulic conductivity at 𝑧0 = 50 cm (dashed line). Table 1
summarizes the properties utilized in Hydrus.

For the Hydrus simulations we use the modified van-Genuchten
model (mvG), because the suction head derivatives d𝛹∕d𝑠𝑤 remain
bounded when 𝑠𝑤 → 1, which is necessary for convergence in the
presence of a saturated region (Vogel and Cislerova, 1988). The solver
does not converge otherwise. The parameters for mvG model are also
given in Table 1 and chosen so that upper and lower layers corre-
spond to sandy-loam and silty clay loam (Carsel and Parrish, 1988),
respectively. The 𝐴𝑙𝑝ℎ𝑎 and 𝑛 parameters of the mvG model (Vogel
and Cislerova, 1988) in the Hydrus software (Šimunek et al., 2012)
are chosen to reduce the capillary pressure effects to a minimum.
The upper (surface) boundary condition is atmospheric with surface
runoff whereas the lower boundary condition is free drainage. The
precipitation 𝑅 is 42.44 cm/day. The initial head inside the domain
is −100 cm.

The need to use the mvG model in Hydrus leads to a discrepancy
with our analytic model which is based on the Brooks–Corey model for
hydraulic properties. However, due to the simplicity of the solution the
hydraulic properties are only sampled at the saturation of the initial
wetting front, in addition to the dry and fully saturated states. This
allows us to choose the parameters in the Brooks–Corey model to match
the hydraulic conductivity at the front saturation. The fitted Kozeny–
Carman parameter is m = 3 and Brooks–Corey parameter is n = 7.15306
for the upper and lower layer porosities of 0.43 and 0.1 respectively.

The Hydrus simulation results are shown in Fig. 11 together with the
analytic solution from Section 4.1.2 (Shadab and Hesse, 2022) and the
numerical solution in the limit of no capillary forces from the proposed
model. The agreement with the numerical solution is excellent in all
three stages of the flow, but the fronts in the Hydrus solution are
less sharp due to the presence of capillary forces which provide an
additional diffusive water flux.

E.2. At intermediate and larger scales

Next, we consider a simple test involving near-saturated infiltration
in a homogeneous 1D column of dry sand over impermeable bedrock
(Fig. 12). This problem is studied Hydrus 1D (for sand), our proposed

model and analytic solutions. We utilize the standard properties of sand
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a
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Table 1
A summary of hydraulic properties of upper and lower layers for modified van-Genuchten model (Vogel and Cislerova, 1988) in Hydrus-1D (Šimunek et al.,
2012).
Layer 𝑄𝑟 𝑄𝑠 𝐴𝑙𝑝ℎ𝑎 (1/cm) 𝑛 𝐾𝑠 (cm/day) 𝑙 𝑄𝑚 𝑄𝑎 𝑄𝑘 𝐾𝑘 (cm/day)

Upper 0 0.43 0.5 2.68 106.1 0.5 0.43 0 0.43 106.1
Lower 0 0.1 0.5 2.68 1.33447 0.5 0.1 0 0.1 1.33447
Fig. 12. Schematic showing near-saturated, one-dimensional infiltration in dry sand at
large spatial scale.

rovided in Hydrus software (𝑄𝑟 = 0, 𝑄𝑠 = 0.43, 𝐾𝑠 = 712.8 cm/day,
𝑛 = 2.68). The domain of depth 𝑧 ∈ [0,1 km] is divided uniformly into
10 and 100 cells with two different cell sizes (100 m and 10 m), referred
to as coarse and fine resolution below. The column chosen is large
to illustrate the practical challenges arising in modeling large systems
where the capillary transition may not be resolved by the grid. The
resulting solution is a wetting front that moves downwards followed
by a rapidly rising perched water table that forms around 73 days due
to ponding on the impermeable bedrock at the base. The analytic result
again comes from the kinematic wave theory for double-textured soil,
as given in Section 4.1.2 (Shadab and Hesse, 2022).

We found that at coarse resolution, Hydrus 1D fails to converge
after 10 days possibly due to capillary pressure term (Fig. 13a) whereas
our solver converges without problems and captures the front speed,
though numerical diffusion broadens the front compared to the analytic
solution (red-dashed) (Fig. 13c). Increasing the grid resolution to 10 m,
allows Hydrus to converge, but the solution is highly oscillatory near
the wetting front (Fig. 13b). At the same grid resolution, our code
(Fig. 13d) provides a sharp wetting front without oscillations and
compares well with the analytic solution. In addition we noticed that
the Hydrus solution does not conserve mass (not shown).

This test problem also allows a simple comparison of the numerical
efficiency of both methods. Fig. 14 compares the cumulative iterations
of each simulator on both the fine and the coarse grid. On the coarse
grid, Fig. 14a illustrates the failure of Hydrus to converge at approx-
imately 11 days. Just before the solution diverges, Hydrus has used
approximately 150 iterations while our code shown in Fig. 14c has
used only approximately 60 iterations. On the fine grid both simulators
converge and have a linear increase in cumulative iterations with time.
The total number of iterations required by Hydrus is 14,000 (Fig. 14b)
while our code just requires 3000 iterations (Fig. 14d).
15
Fig. 13. Saturation profiles at different times during large-scale 1D infiltration process
in soil with impermeable base. Solutions are obtained from Hydrus-1D for (a) coarse
grid (100 m cell size) and (b) fine grid (10 m cell size), and from the proposed method
for (c) coarse grid (100 m cell size) and (d) fine grid (10 m cell size). The blue
line shows calculated results from our solver whereas the red dashed line shows the
corresponding analytic results from extended kinematic wave theory (Shadab and Hesse,
2022). Panel a is limited to 10 days as Hydrus blows up after it.

Lastly, the conservation of mass is studied using the mass balance
ratio criteria defined by Celia et al. (1990) as:

Mass balance ratio = Total additional mass in the domain
Total net flux of water into the domain . (46)

A unity mass balance ratio signifies perfect conservation of mass for
a numerical method. The proposed numerical technique utilizes the
conservation form of the governing equation and conserves mass for
both tests at coarse and fine grids (Fig. 15). The drop in the mass
balance ratio is on the order of 10−12 due to machine precision.
For conventional numerical methods, it may significantly drop by an
order of 10−1 (see Celia et al., 1990) showing a lack of discrete mass
conservation.
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Fig. 14. Cumulative iterations for the tests performed corresponding to each panel in Fig. 13. Therefore, the curves are obtained from Hydrus for (a) coarse grid (100 m cell size)
and (b) fine grid (10 m cell size), and from the proposed method for (c) coarse grid (100 m cell size) and (d) fine grid (10 m cell size).
Fig. 15. Mass balance ratio for the test shown in Fig. 14 on coarse (100 m cell size)
nd fine grids (10 m cell size) using the proposed numerical method.
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